cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144316 Shifts left when Dirichlet convolution (DC:(b,b)->a) applied twice.

Original entry on oeis.org

1, 1, 4, 16, 70, 280, 1168, 4672, 18884, 75632, 303368, 1213472, 4858064, 19432256, 77743040, 310975520, 1243959873, 4975839492, 19903598208, 79614392832, 318458493192, 1273834028832, 5095339755744, 20381359022976, 81525450936496, 326101803775384
Offset: 1

Views

Author

Alois P. Heinz, Sep 17 2008

Keywords

Crossrefs

2nd column of A144324, 3rd column of A144823.

Programs

  • Maple
    k:=2: with(numtheory): dc:= proc(b,c) proc(n) option remember; add(b(d) *c(n/d), d=`if`(n<0,{}, divisors(n))) end end: a:='a': b[1]:= dc(a,a): for t from 2 to k do b[t]:= dc(b[t-1], b[t-1]) od: a:= n-> `if`(n=1, 1, b[k](n-1)): seq(a(n), n=1..30);
  • Mathematica
    dc[b_, c_] := Module[{proc}, proc[n_] := proc[n] = Sum[b[d]*c[n/d], {d, If[n < 0, {}, Divisors[n]]}]; proc];
    A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], b[t-1]]]; a = Function[m, If[m == 1, 1, b[k][m-1]]]; a[n]];
    a[n_] := A[n, 2];
    Array[a, 30] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)

Formula

a(n) ~ c * 4^n, where c = 0.0724091505138381672774074945426621544789572745186499358668403190389... . - Vaclav Kotesovec, Sep 03 2014