cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144326 Prime numbers that cannot be Mersenne prime exponents, by conjecture of A144325.

Original entry on oeis.org

67, 191, 197, 211, 277, 331, 379, 397, 401, 541, 617, 631, 677, 727, 743, 751, 821, 937, 947, 971, 991, 1129, 1163, 1171, 1217, 1277, 1289, 1327, 1381, 1409, 1427, 1471, 1549, 1559, 1597, 1601, 1607, 1783, 1801, 1831, 1871, 1901, 2011, 2017, 2081, 2111
Offset: 1

Views

Author

Reikku Kulon, Sep 17 2008

Keywords

Comments

Obviously true for the initial terms!
Conjecture: 191, 1217, 1559 and 1901 are not in fact members of this sequence, noting that they are (4, 19) k-figurate numbers; 19 is a member of A138694. Determining whether a Mersenne prime exponent one greater than a (4, 19) k-figurate number exists is sufficient to determine whether these primes are members.

Crossrefs