A144345
Second column (m=2) of triangle S2p(-2) = A004747.
Original entry on oeis.org
1, 6, 52, 600, 8680, 151200, 3082240, 71998080, 1896294400, 55601145600, 1796277683200, 63397990656000, 2427084884224000, 100175046107136000, 4434284662872064000, 209554432423784448000, 10530302071553904640000, 560682451860226375680000
Offset: 0
A371080
Triangle read by rows: BellMatrix(Product_{p in P(n)} p), where P(n) = {k : k mod m = 1 and 1 <= k <= m*(n + 1)} and m = 3.
Original entry on oeis.org
1, 0, 1, 0, 4, 1, 0, 28, 12, 1, 0, 280, 160, 24, 1, 0, 3640, 2520, 520, 40, 1, 0, 58240, 46480, 11880, 1280, 60, 1, 0, 1106560, 987840, 295960, 40040, 2660, 84, 1, 0, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 4, 1;
[3] 0, 28, 12, 1;
[4] 0, 280, 160, 24, 1;
[5] 0, 3640, 2520, 520, 40, 1;
[6] 0, 58240, 46480, 11880, 1280, 60, 1;
[7] 0, 1106560, 987840, 295960, 40040, 2660, 84, 1;
-
a := n -> mul(select(k -> k mod 3 = 1, [seq(1..3*(n + 1))])): BellMatrix(a, 9);
# Alternative:
BellMatrix(n -> coeff(series((1/x)*hypergeom([1, 1/3], [], 3*x),x, 22), x, n), 9);
# Recurrence:
T := proc(n, k) option remember; if k = n then 1 elif k = 0 then 0 else
T(n - 1, k - 1) + (3*(n - 1) + k) * T(n - 1, k) fi end:
for n from 0 to 7 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Mar 13 2024
-
T(n, k) = sum(j=k, n, 3^(n-j)*abs(stirling(n, j, 1))*stirling(j, k, 2)); \\ Seiichi Manyama, Apr 19 2025
Showing 1-2 of 2 results.