A144353 Partition number array, called M31(3), related to A046089(n,m)= |S1(3;n,m)| (generalized Stirling triangle).
1, 3, 1, 12, 9, 1, 60, 48, 27, 18, 1, 360, 300, 360, 120, 135, 30, 1, 2520, 2160, 2700, 1440, 900, 2160, 405, 240, 405, 45, 1, 20160, 17640, 22680, 25200, 7560, 18900, 10080, 11340, 2100, 7560, 2835, 420, 945, 63, 1, 181440, 161280, 211680, 241920, 126000, 70560, 181440
Offset: 1
Examples
[1];[3,1];[12,9,1];[60,48,27,18,1];[360,300,360,120,135,30,1];... a(4,3)= 27 = 3*|S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)=(n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S1(3;j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A001710(n+1) = (n+1)!/2!, n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. M3(n,k)=A036040.
Comments