A144464 Triangle T(n,m) read by rows: T(n,m) = 2^min(m,n-m).
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 2, 4, 4, 2, 1, 1, 2, 4, 8, 4, 2, 1, 1, 2, 4, 8, 8, 4, 2, 1, 1, 2, 4, 8, 16, 8, 4, 2, 1, 1, 2, 4, 8, 16, 16, 8, 4, 2, 1, 1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1
Offset: 0
Examples
The triangle starts in row n=0 as: {1}, {1, 1}, {1, 2, 1}, {1, 2, 2, 1}, {1, 2, 4, 2, 1}, {1, 2, 4, 4, 2, 1}, {1, 2, 4, 8, 4, 2, 1}, {1, 2, 4, 8, 8, 4, 2, 1}, {1, 2, 4, 8, 16, 8, 4, 2, 1}, {1, 2, 4, 8, 16, 16, 8, 4, 2, 1}, {1, 2, 4, 8, 16, 32, 16, 8, 4, 2, 1}
Programs
-
Mathematica
Clear[f, t]; f[n_, m_] = If[m <= Floor[n/2], m, n - m]; Table[Table[f[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
-
PARI
T(n,m)=1<
Charles R Greathouse IV, Jan 15 2012
Formula
Row sums: sum_{m=0..n} T(n,m) = A027383(n).
T(n,k) = 2^A004197(n,k). - Philippe Deléham, Feb 25 2014
Extensions
Offset corrected by the Associate Editors of the OEIS, Sep 11 2009
Better name by Philippe Deléham, Feb 25 2014