A144470 Triangle t(n,m) read by rows: t(n,m) = binomial(n,m)*3^m if m <= n/2, else t(n,m) = t(n,n-m).
1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 12, 54, 12, 1, 1, 15, 90, 90, 15, 1, 1, 18, 135, 540, 135, 18, 1, 1, 21, 189, 945, 945, 189, 21, 1, 1, 24, 252, 1512, 5670, 1512, 252, 24, 1, 1, 27, 324, 2268, 10206, 10206, 2268, 324, 27, 1, 1, 30, 405, 3240, 17010, 61236, 17010, 3240
Offset: 0
Examples
1; 1, 1; 1, 6, 1; 1, 9, 9, 1; 1, 12, 54, 12, 1; 1, 15, 90, 90, 15, 1; 1, 18, 135, 540, 135, 18, 1; 1, 21, 189, 945, 945, 189, 21, 1; 1, 24, 252, 1512, 5670, 1512, 252, 24, 1; 1, 27, 324, 2268, 10206, 10206, 2268, 324, 27, 1; 1, 30, 405, 3240, 17010, 61236, 17010, 3240, 405, 30, 1;
Programs
-
Maple
A144470 := proc(n,m) if m <= floor(n/2) then binomial(n,m)*3^m ; else procname(n,n-m) ; end if; end proc: # R. J. Mathar, Feb 03 2011
-
Mathematica
f[n_, m_] = If[m <= Floor[n/2], m, n - m]; Table[Table[Binomial[n, m]*3^f[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
t(n,m) = binomial(n,m)*3^m if 0 <= m <= n/2, t(n,m) = binomial(n,m)*3^(n-m) if n/2 < m <= n.
Comments