A144477 a(n) = minimal number of 0's that must be changed to 1's in the binary expansion of the n-th prime in order to make it into a palindrome.
1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 1, 2, 0, 2, 2, 1, 1, 2, 1, 0, 2, 2, 0, 1, 1, 2, 2, 3, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 3, 1, 0, 2, 2, 3, 1, 1, 2, 2, 2, 3, 0, 1, 3, 1, 3, 1, 2, 2, 1, 1, 2, 1, 2, 3, 1, 2, 1, 3, 1, 2, 2, 0, 2, 3, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3
Offset: 1
Examples
a(5) = 1 since prime(5) = 11 = 1011_2 becomes a palindrome if we change the third bit to 0.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Subsequence of A037888.
Programs
-
Mathematica
A144477[n_]:=With[{p=IntegerDigits[Prime[n],2]},HammingDistance[p,Reverse[p]]/2];Array[A144477,100] (* Paolo Xausa, Nov 13 2023 *)
-
PARI
HD(p)= { v=binary(p); H=0; j=#v; for(k=1,#v, H+=abs(v[k]-v[j]); j--); return(H) }; for(n=1,100, p=prime(n); an=HD(p)/2; print1(an,", "))
Formula
a(n) is half the Hamming distance between the binary expansion of prime(n) and its reversal.
Extensions
Edited by N. J. A. Sloane, Apr 23 2020 at the suggestion of Harvey P. Dale