cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144506 Column 3 of triangle in A144505, negated.

Original entry on oeis.org

0, 0, 0, 0, 1, 14, 175, 2330, 34300, 561386, 10179309, 203240850, 4439192835, 105413331100, 2705921548616, 74703337429084, 2207904948683525, 69575538504102190, 2329022305536291275, 82546355086989894366, 3088417981826529182964, 121651432581579519835950, 5032424258902838518567945
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2008

Keywords

Programs

  • Magma
    I:=[0,0,0,0,1]; [n le 5 select I[n] else ((n-4)*(4*n^2-32*n+69)*Self(n-1) + (n-3)*(2*n-7)*Self(n-2))/((n-5)*(2*n-9)): n in [1..30]]; // A144506 // G. C. Greubel, Oct 10 2023
    
  • Maple
    f3:=proc(n) local k; add((n+k-1)!/(6*(n-k-4)!*k!*2^k),k=0..n-4); end;
    [seq(f3(n), n=0..60)];
  • Mathematica
    a[n_]:= a[n]= If[n<4, 0, If[n==4, 1, ((n-3)*(4*n^2-24*n+41)*a[n-1] + (n -2)*(2*n-5)*a[n-2])/((n-4)*(2*n-7))]]; (* a = A144506 *)
    Table[a[n], {n,0,30}] (* G. C. Greubel, Oct 10 2023 *)
  • SageMath
    @CachedFunction
    def A144506(n): return sum(binomial(n-4,j)*rising_factorial(n-3,j+3)/(6*2^j) for j in range(n-3))
    [A144506(n) for n in range(31)] # G. C. Greubel, Oct 10 2023

Formula

a(n) = Sum_{k=0..n-4} (n+k-1)!/(6*k!*(n-k-4)!*2^k).
a(n) = ( (n-3)*(4*n^2 - 24*n + 41)*a(n-1) + (n-2)*(2*n-5)*a(n-2) )/((n-4)*(2*n-7)), with a(0)=a(1)=a(2)=a(3)= 0, and a(4) = 1. - G. C. Greubel, Oct 10 2023