A144512 Array read by upwards antidiagonals: T(n,k) = total number of partitions of [1, 2, ..., k] into exactly n blocks, each of size 1, 2, ..., k+1, for 0 <= k <= (k+1)*n.
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 31, 37, 1, 1, 5, 121, 842, 266, 1, 1, 6, 456, 18252, 45296, 2431, 1, 1, 7, 1709, 405408, 7958726, 4061871, 27007, 1, 1, 8, 6427, 9268549, 1495388159, 7528988476, 546809243, 353522, 1, 1, 9, 24301, 216864652, 295887993624, 15467641899285
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, ... 1, 3, 31, 842, 45296, 4061871, 546809243, 103123135501, ... 1, 4, 121, 18252, 7958726, 7528988476, 13130817809439, ... 1, 5, 456, 405408, 1495388159, 15467641899285, 361207016885536095, ... 1, 6, 1709, 9268549, 295887993624, 34155922905682979, 10893033763705794846727, ... ...
Links
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem (arXiv:0907.0513, 2009)
Crossrefs
Programs
-
Maple
b := proc(n, i, k) local r; option remember; if n = i then 1; elif i < n then 0; elif n < 1 then 0; else add( binomial(i-1,r)*b(n-1,i-1-r,k), r=0..k); end if; end proc; T:=proc(n,k); add(b(n,i,k),i=0..(k+1)*n); end proc;
-
Mathematica
multinomial[n_, k_List] := n!/Times @@ (k!); t[n_, k_] := Module[{i, ik}, ik = Array[i, k]; 1/k!* Sum[multinomial[Total[ik], ik], Evaluate[Sequence @@ Thread[{ik, 1, n}]]]]; Table[t[n-k, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)