A094762 a(n) = Bell(n+1) - 2^n + 1 + n, where Bell(i) is the i-th Bell number A000110(i).
1, 2, 4, 11, 41, 177, 820, 4020, 20900, 115473, 677557, 4211561, 27640354, 190891144, 1382942176, 10480109395, 82864804285, 682076675105, 5832741942932, 51724157711104, 474869815108196, 4506715736350193, 44152005850890065, 445958869286416705
Offset: 0
Keywords
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 210.
Programs
-
Maple
with(combinat); [seq(bell(n+1)-2^n+n+1,n=0..30)];
-
Mathematica
Table[BellB[n+1]-2^n+n+1,{n,0,30}] (* Harvey P. Dale, Apr 24 2018 *)
Formula
Also a(n) = 2^n + Sum_{m=3..n} binomial(n,m)*(Bell(m)-2).
Comments