A369614 Maximal size of Condorcet domain on n alternatives.
1, 1, 2, 4, 9, 20, 45, 100, 224
Offset: 0
Examples
For n <= 2, the set of all n! permutations is a Condorcet domain. For n = 3, an example of a Condorcet domain of maximal size is the following set of permutations: 123 213 231 321 For n = 4, an example of a Condorcet domain of maximal size is: 1234 1324 1342 3124 3142 3412 3421 4312 4321
Links
- Dolica Akello-Egwell, Charles Leedham-Green, Alastair Litterick, Klas Markström and Søren Riis, Condorcet Domains of Degree at most Seven, arXiv:2306.15993 [cs.DM], 2023. See the website presenting all maximal unitary Condorcet domains on 4, 5, 6, 7 alternatives.
- Clemens Puppe and Arkadii Slinko, Maximal Condorcet domains: A further progress report, KIT Working Paper Series in Economics, 159 (2022).
- Charles Leedham-Green, Klas Markström and Søren Riis, The largest Condorcet domain on 8 alternatives, Soc. Choice Welf., 62 (2024), 109-116.
- Bernard Monjardet, Acyclic domains of linear orders: a survey, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160; preprint: halshs-00198635.
- Wikipedia, Condorcet paradox.
Comments