A144693 Triangle read by rows, A000012 * (3*A144328 - 2*A000012), where A000012 means a lower triangular matrix of all 1's.
1, 2, 1, 3, 2, 4, 4, 3, 8, 7, 5, 4, 12, 14, 10, 6, 5, 16, 21, 20, 13, 7, 6, 20, 28, 30, 26, 16, 8, 7, 24, 35, 40, 39, 32, 19, 9, 8, 28, 42, 50, 52, 48, 38, 22, 10, 9, 32, 49, 60, 65, 64, 57, 44, 25, 11, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28
Offset: 1
Examples
Partial sums by columns of the triangle (3*A144328 - 2*A000012): 1; 1, 1; 1, 1, 4; 1, 1, 4, 7; 1, 1, 4, 7, 10; ... First few rows of the triangle: 1; 2, 1 3, 2, 4; 4, 3, 8, 7; 5, 4, 12, 14, 10; 6, 5, 16, 21, 20, 13; 7, 6, 20, 28, 30, 26, 16; 8, 7, 24, 35, 40, 39, 32, 19; ...
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
A144693:= func< n,k | k eq 1 select n else (3*k-5)*(n-k+1) >; [A144693(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 19 2021
-
Mathematica
T[n_, k_]:= (3*k -5 +3*Boole[k==1])*(n-k+1); Table[T[n, k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 19 2021 *)
-
Sage
def A144693(n,k): return (3*k -5 +3*bool(k==1))*(n-k+1) flatten([[A144693(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 19 2021
Formula
Sum_{k=1..n} T(n, k) = A064808(n).
T(n, k) = (3*k -5 +3*[k=1])*(n-k+1). - G. C. Greubel, Oct 19 2021