cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144695 Numbers n such that sigma_1(n)/sigma_0(n) = c^2, c an integer.

Original entry on oeis.org

1, 7, 17, 22, 30, 31, 71, 94, 97, 115, 119, 127, 138, 154, 164, 165, 199, 210, 214, 217, 241, 260, 265, 318, 337, 343, 374, 382, 449, 497, 510, 513, 517, 527, 577, 647, 658, 668, 679, 682, 705, 745, 759, 805, 862, 881, 889, 894, 930, 966, 967, 996, 1102, 1125
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 19 2008

Keywords

Comments

A000203(n)/A000005(n) = c^2. Generalized sigma-sequences are sequences of numbers n for which sigma_r(n)/sigma_s(n) = c^t . Sigma_i(n) denotes sum of i-th powers of divisors of n; c,r,s,t positive integers. This sequence has r=1,s=0,t=2, sequence A003601 has r=1,s=0,t=1, sequence {1,21,53,85,102,110,127,217,431,....} has r=1,s=0,t=3, sequence A020487 has r=2,s=1,t=1, sequence A020486 has r=2,s=0,t=1, sequence A140480 has r=2,s=0,t=2.

Crossrefs

Programs

  • Maple
    A000005 := proc(n) numtheory[tau](n) ; end: A000203 := proc(n) numtheory[sigma](n) ; end: isA144695 := proc(n) local s ; s := A000005(n) ; if s <> 0 then issqr(A000203(n)/s) ; else false ; fi; end: for n from 1 to 5000 do if isA144695(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 20 2008
  • Mathematica
    Select[Range[1125], IntegerQ @ Sqrt[DivisorSigma[1, #]/DivisorSigma[0, #]] &] (* Amiram Eldar, Nov 20 2019 *)
  • PARI
    isok(m) = my(f=factor(m), q=sigma(f)/numdiv(f)); issquare(q) && !frac(q); \\ Michel Marcus, Mar 15 2022

Extensions

More terms from R. J. Mathar, Sep 20 2008