A144700 Generalized (3,-1) Catalan numbers.
1, 1, 1, 1, 2, 5, 11, 21, 38, 71, 141, 289, 591, 1195, 2410, 4897, 10051, 20763, 42996, 89139, 185170, 385809, 806349, 1689573, 3547152, 7459715, 15714655, 33161821, 70095642, 148388521, 314562189, 667682057, 1418942341
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
Programs
-
Magma
[(&+[Binomial(n-k,3*k)*Catalan(k): k in [0..Floor(n/4)]]): n in [0..40]]; // G. C. Greubel, Jun 15 2022
-
Mathematica
b[n_, m_]:=a[n, m]=Sum[Binomial[n-k,m*k]*CatalanNumber[k], {k,0,Floor[n/(m+1)]}]; A144700[n_]:= b[n,3]; (* A014137 (m=0), A090344 (m=1), A023431 (m=2) *) Table[A144700[n], {n, 0, 40}] (* G. C. Greubel, Jun 15 2022 *)
-
SageMath
[sum(binomial(n-k,3*k)*catalan_number(k) for k in (0..(n//4))) for n in (0..40)] # G. C. Greubel, Jun 15 2022
Formula
G.f.: (1/(1-x)) * c(x^4/(1-x)^3), where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..floor(n/4)} binomial(n-k, 3*k)*A000108(k).
(n+4)*a(n) = 2*(2*n+5)*a(n-1) - 6*(n+1)*a(n-2) + 2*(2*n-1)*a(n-3) +3*(n-2)*a(n-4) - 2*(2*n-7)*a(n-5). - R. J. Mathar, Nov 16 2011
a(n) = b(n, 3), where b(n, m) = Sum_{k=0..floor(n/(m+1))} binomial(n-k, m*k)*A000108(k). - G. C. Greubel, Jun 15 2022
Comments