A144706 Central coefficients of the triangle A132047.
1, 6, 18, 60, 210, 756, 2772, 10296, 38610, 145860, 554268, 2116296, 8112468, 31201800, 120349800, 465352560, 1803241170, 7000818660, 27225405900, 106035791400, 413539586460, 1614773623320, 6312296891160, 24700292182800, 96742811049300, 379231819313256
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
[n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022
-
Mathematica
Table[3*Binomial[2n,n] -2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
-
PARI
a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023
-
SageMath
[3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
Formula
G.f.: 3/sqrt(1-4*x) - 2;
a(n) = 3*binomial(2*n, n) - 2*0^n.
From Philippe Deléham, Oct 30 2008: (Start)
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1). - R. J. Mathar, Nov 30 2012
E.g.f.: -2 + 3*exp(2*x)*BesselI(0, 2*x). - G. C. Greubel, Jun 16 2022
Comments