cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144706 Central coefficients of the triangle A132047.

Original entry on oeis.org

1, 6, 18, 60, 210, 756, 2772, 10296, 38610, 145860, 554268, 2116296, 8112468, 31201800, 120349800, 465352560, 1803241170, 7000818660, 27225405900, 106035791400, 413539586460, 1614773623320, 6312296891160, 24700292182800, 96742811049300, 379231819313256
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Comments

Hankel transform is A144708.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 3*(n+1)*Catalan(n): n in [0..40]]; // G. C. Greubel, Jun 16 2022
    
  • Mathematica
    Table[3*Binomial[2n,n] -2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
  • PARI
    a(n) = if(n, 3*binomial(2*n, n), 1) \\ Charles R Greathouse IV, Oct 23 2023
  • SageMath
    [3*binomial(2*n, n) -2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
    

Formula

G.f.: 3/sqrt(1-4*x) - 2;
a(n) = 3*binomial(2*n, n) - 2*0^n.
From Philippe Deléham, Oct 30 2008: (Start)
a(n) = Sum_{k=0..n} A039599(n,k)*A010686(k).
a(n) = Sum_{k=0..n} A106566(n,k)*A082505(k+1). (End)
D-finite with recurrence: n*a(n) = 2*(2*n-1)*a(n-1). - R. J. Mathar, Nov 30 2012
E.g.f.: -2 + 3*exp(2*x)*BesselI(0, 2*x). - G. C. Greubel, Jun 16 2022