cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144707 Diagonal sums of the triangle A132047.

Original entry on oeis.org

1, 1, 2, 7, 11, 22, 35, 61, 98, 163, 263, 430, 695, 1129, 1826, 2959, 4787, 7750, 12539, 20293, 32834, 53131, 85967, 139102, 225071, 364177, 589250, 953431, 1542683, 2496118, 4038803, 6534925, 10573730, 17108659, 27682391, 44791054, 72473447, 117264505
Offset: 0

Views

Author

Paul Barry, Sep 19 2008

Keywords

Crossrefs

Cf. A000045.

Programs

  • Mathematica
    Table[3*Fibonacci[n+1] -3 -(-1)^n +2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
  • PARI
    Vec((1-x^2+4*x^3+2*x^4) / ((1-x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
    
  • SageMath
    [3*fibonacci(n+1) -2 -2*((n+1)%2) +2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022

Formula

G.f.: (1 - x^2 + 4*x^3 + 2*x^4) / ((1 - x^2)*(1 - x - x^2)).
a(n) = 3*Fibonacci(n+1) - 3 - (-1)^n + 2*0^n.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>4. - Philippe Deléham, Dec 16 2008
From Colin Barker, Jul 12 2017: (Start)
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) - 4 for n>0 and even.
a(n) = (3*2^(-n-1)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)))/sqrt(5) - 2 for n odd.
(End)