A144707 Diagonal sums of the triangle A132047.
1, 1, 2, 7, 11, 22, 35, 61, 98, 163, 263, 430, 695, 1129, 1826, 2959, 4787, 7750, 12539, 20293, 32834, 53131, 85967, 139102, 225071, 364177, 589250, 953431, 1542683, 2496118, 4038803, 6534925, 10573730, 17108659, 27682391, 44791054, 72473447, 117264505
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Crossrefs
Cf. A000045.
Programs
-
Mathematica
Table[3*Fibonacci[n+1] -3 -(-1)^n +2*Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 16 2022 *)
-
PARI
Vec((1-x^2+4*x^3+2*x^4) / ((1-x^2)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017
-
SageMath
[3*fibonacci(n+1) -2 -2*((n+1)%2) +2*bool(n==0) for n in (0..40)] # G. C. Greubel, Jun 16 2022
Formula
G.f.: (1 - x^2 + 4*x^3 + 2*x^4) / ((1 - x^2)*(1 - x - x^2)).
a(n) = 3*Fibonacci(n+1) - 3 - (-1)^n + 2*0^n.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>4. - Philippe Deléham, Dec 16 2008
From Colin Barker, Jul 12 2017: (Start)
a(n) = (3*2^(-n-1)*((1 + sqrt(5))^(n+1) - (1-sqrt(5))^(n+1))) / sqrt(5) - 4 for n>0 and even.
a(n) = (3*2^(-n-1)*((1+sqrt(5))^(n+1) - (1-sqrt(5))^(n+1)))/sqrt(5) - 2 for n odd.
(End)