cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144711 Numbers n such that [sum_i=1..r (p(i)^2)]/r = c^2. p(i) prime divisors of n, c integer.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 119, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211
Offset: 1

Views

Author

Ctibor O. Zizka, Sep 19 2008

Keywords

Comments

A005063(n)/A001221(n) = c^2.
Also numbers n such that the root mean square (quadratic mean) of the prime divisors of n is an integer.
These numbers are power of primes (p^k with k>=1) (A000961) or in A255580. - Daniel Lignon, Feb 26 2015

Crossrefs

Programs

  • Maple
    A005063 := proc(n) add(p^2,p=numtheory[factorset](n)) ; end: A001221 := proc(n) nops(numtheory[factorset](n)) ; end: isA144711 := proc(n) local sofpr ; sofpr := A001221(n) ; if sofpr <> 0 then issqr(A005063(n)/sofpr) ; else false ; fi; end: for n from 1 to 500 do if isA144711(n) then printf("%d,",n) ; fi; od: # R. J. Mathar, Sep 20 2008
  • Mathematica
    Select[Range[2,1000],IntegerQ[RootMeanSquare[Select[Divisors[#],PrimeQ]]]&] (* Daniel Lignon, Feb 26 2015 *)

Extensions

More terms from R. J. Mathar, Sep 20 2008