A144724 a(n) is the smallest positive integer such that b * (Product_{k=1..n} a(k)) + 1 is prime, with b = 4.
1, 3, 5, 7, 8, 9, 11, 12, 14, 17, 20, 24, 30, 34, 44, 72, 85, 86, 92, 115, 122, 125, 132, 142, 150, 161, 162, 181, 186, 198, 224, 248, 252, 282, 283, 290, 307, 319, 321, 344, 350, 376, 445, 476, 567, 623, 676, 682, 704, 741, 749, 786, 803, 806, 893, 1014, 1046, 1079
Offset: 1
Keywords
Examples
4*1+1=5 is prime => a(1)=1. 4*1*2+1=9 is not prime (omitted). 4*1*3+1=13 is prime => a(2)=3.
Crossrefs
Programs
-
Mathematica
k = 4; a = {}; Do[If[PrimeQ[k n + 1], k = k n; AppendTo[a, n]], {n, 1, 3000}]; a (* Artur Jasinski *)
Extensions
Definition corrected by Georg Fischer, Jun 18 2021
Comments