A144735 Square of triangle A054533 (matrix square), read by rows.
1, -2, 1, -2, -3, 4, 2, -6, 0, 4, -3, -2, -6, -6, 16, 5, 0, -9, -5, 6, 4, -5, -2, -5, -6, -11, -8, 36, 0, 8, 0, -24, 0, 0, 0, 16, 0, 6, -18, 3, -3, -24, 0, 0, 36, 7, 0, 8, 2, -34, -10, 10, -8, 10, 16
Offset: 1
Examples
First few rows of the triangle are as follows: 1; -2, 1; -2, -3, 4; 2, -6, 0, 4; -3, -2, -6, -6, 16; 5, 0, -9, -5, 6, 4; -5, -2, -5, -6, -11, -8, 36; 0, 8, 0, -24, 0, 0, 0, 16; 0, 6, -18, 3, -3, -24, 0, 0, 36; 7, 0, 8, 2, -34, -10, 10, -8, 10, 16; ...
Formula
A054533^2, as an infinite lower triangular matrix.
T(n, k) = Sum_{s = k..n} R(n, s) * R(s, k) for n >= 1 and 1 <= k <= n, where R(n, s) = A054533(n, s) = Sum_{d | gcd(n,s)} d * mu(n/d). - Petros Hadjicostas, Jul 29 2019
Comments