cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144750 A098777 mod 9.

Original entry on oeis.org

1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 08 2009

Keywords

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0,1,(-1)^n*add(binomial(n-1,k)*a(k)*a(n-1-k),k=0..n-1)) end: seq(modp(a(n),9), n=0..100); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    b[0] = 1;
    b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}];
    a[n_] := Mod[b[n], 9]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)

Formula

From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5) - a(n-6) + a(n-8) for n > 7 (conjectured).
G.f.: (-8*x^7 - 4*x^6 + 3*x^5 + 8*x^4 + 7*x^3 - 6*x^2 - 8*x - 1)/((x - 1)*(x + 1)*(x^6 - x^3 + 1)) (conjectured). (End)