A144750 A098777 mod 9.
1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1, 2, 7, 2, 4, 5, 4, 8, 1, 8, 7, 2, 7, 5, 4, 5, 1, 8, 1
Offset: 0
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- R. Bacher and P. Flajolet, Pseudo-factorials, Elliptic Functions and Continued Fractions, arXiv:0901.1379 [math.CA], 2009.
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0,1,(-1)^n*add(binomial(n-1,k)*a(k)*a(n-1-k),k=0..n-1)) end: seq(modp(a(n),9), n=0..100); # Muniru A Asiru, Jul 29 2018
-
Mathematica
b[0] = 1; b[n_] := b[n] = (-1)^n Sum[Binomial[n-1, k] b[k] b[n-k-1], {k, 0, n-1}]; a[n_] := Mod[b[n], 9]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2018 *)
Formula
From Chai Wah Wu, Nov 30 2018: (Start)
a(n) = a(n-2) + a(n-3) - a(n-5) - a(n-6) + a(n-8) for n > 7 (conjectured).
G.f.: (-8*x^7 - 4*x^6 + 3*x^5 + 8*x^4 + 7*x^3 - 6*x^2 - 8*x - 1)/((x - 1)*(x + 1)*(x^6 - x^3 + 1)) (conjectured). (End)