A144784 Variant of Sylvester's sequence: a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 11.
11, 111, 12211, 149096311, 22229709804712411, 494159998001727075769152612720511, 244194103625066907517263589918036880566782292998362610615987380611
Offset: 1
Keywords
Links
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437.
- A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437 (original plus references that F.Q. forgot to include - see last page!)
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
Crossrefs
Programs
-
Mathematica
a = {}; r = 11; Do[AppendTo[a, r]; r = r^2 - r + 1, {n, 1, 10}]; a
Formula
a(n+1) = a(n)^2 - a(n) + 1, with a(1) = 11.
a(n) ~ c^(2^n) where c = 3.242214... (see A144808).
Comments