A144790 Consider the runs of 1's in the binary representation of n, each of these runs being on the edge of the binary representation n and/or being bounded by 0's. a(n) = the length of the shortest such run of 1's in binary n.
1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 3, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 4, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 4, 1, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1
Offset: 1
Examples
19 in binary is 10011. The runs of 1's are as follows: (1)00(11). The shortest of these runs contains exactly one 1. So a(19) = 1.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
Array[Min@ Map[Length, Select[Split@ IntegerDigits[#, 2], First@ # == 1 &]] &, 105] (* Michael De Vlieger, Oct 26 2017 *)
Extensions
Extended by Ray Chandler, Nov 04 2008