A144816 Denominators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2*k+1) in polynomial t_n(x), used to define continuous and n times differentiable sigmoidal transfer functions.
1, 2, 2, 8, 4, 8, 16, 16, 16, 16, 128, 32, 64, 32, 128, 256, 256, 128, 128, 256, 256, 1024, 512, 1024, 256, 1024, 512, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 4096, 8192, 4096, 16384, 4096, 8192, 4096, 32768, 65536, 65536, 16384, 16384, 32768, 32768, 16384, 16384, 65536, 65536
Offset: 0
Examples
Triangle begins: 1; 2, 2; 8, 4, 8; 16, 16, 16, 16; 128, 32, 64, 32, 128; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
# Function T(n,k) defined in A144815. seq(seq(denom(T(n,k)), k=0..n), n=0..10);
-
Mathematica
row[n_] := Module[{f, a, eq}, f = Function[x, Sum[a[2*k+1]*x^(2*k+1), {k, 0, n}]]; eq = Table[Derivative[k][f][1] == If[k == 0, 1, 0], {k, 0, n}]; Table[a[2*k+1], {k, 0, n}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 03 2014 *)