cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144817 Shifts left when Dirichlet convolution with a (DC:(b,a)->c) applied twice.

Original entry on oeis.org

1, 1, 3, 9, 30, 90, 288, 864, 2647, 7968, 24084, 72252, 217467, 652401, 1958931, 5877333, 17637453, 52912359, 158754606, 476263818, 1428840972, 4286528100, 12859728804, 38579186412, 115738013592, 347214043476, 1041643435230, 3124930353363, 9374794990911
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Crossrefs

2nd column of A144823.

Programs

  • Maple
    with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{},divisors(n))) end end: A:= proc(n, k) local a, b, t; b[1]:= dc(a,a); for t from 2 to k do b[t]:= dc(b[t-1],a) od: a:= n-> `if`(n=1, 1, b[k](n-1)); a(n) end: a:= n-> A(n,2): seq (a(n), n=1..30);
  • Mathematica
    dc[b_, c_] := Module[{f}, f[n_] := f[n] = Sum[b[d] c[n/d], {d, If[n<0, {}, Divisors[n]]}]; f];
    A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], a]]; a = Function[m, If[m==1, 1, b[k][m-1]]]; a[n]];
    a[n_] := A[n, 2];
    Array[a, 30] (* Jean-François Alcover, Dec 18 2020, after Maple *)

Formula

a(n) ~ c * 3^n, where c = 0.1365983596534181021630692308337960543393478528568767041107748567859... . - Vaclav Kotesovec, Sep 03 2014