cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144819 Shifts left when Dirichlet convolution with a (DC:(b,a)->c) applied 5 times.

Original entry on oeis.org

1, 1, 6, 36, 231, 1386, 8496, 50976, 306956, 1842276, 11060586, 66363516, 398229516, 2389377096, 14336517456, 86019146316, 516116428791, 3096698572746, 18580200896796, 111481205380776, 668887287816276
Offset: 1

Views

Author

Alois P. Heinz, Sep 21 2008

Keywords

Crossrefs

5th column of A144823.

Programs

  • Maple
    with (numtheory): dc:= proc(b,c) proc(n) option remember; add (b(d) *c(n/d), d=`if`(n<0,{},divisors(n))) end end: A:= proc(n, k) local a, b, t; b[1]:= dc(a,a); for t from 2 to k do b[t]:= dc(b[t-1],a) od: a:= n-> `if`(n=1, 1, b[k](n-1)); a(n) end: a:= n-> A(n,5): seq (a(n), n=1..30);
  • Mathematica
    dc[b_, c_] := Module[{f}, f[n_] := f[n] = Sum[b[d] c[n/d], {d, If[n<0, {}, Divisors[n]]}]; f];
    A[n_, k_] := Module[{a, b, t}, b[1] = dc[a, a]; For[t = 2, t <= k, t++, b[t] = dc[b[t-1], a]]; a = Function[m, If[m==1, 1, b[k][m-1]]]; a[n]];
    a[n_] := A[n, 5];
    Array[a, 30] (* Jean-François Alcover, Dec 18 2020, after Maple *)