A144847
Denominators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial u_n(x), used to approximate x->sin(Pi*x)/Pi.
Original entry on oeis.org
1, 2, 2, 8, 4, 8, 88, 22, 88, 44, 2048, 64, 1024, 256, 2048, 78656, 4916, 19664, 39328, 78656, 39328, 4439936, 34687, 277496, 1109984, 4439936, 1109984, 2219968, 344674688, 2692771, 21542168, 43084336, 344674688, 86168672, 172337344
Offset: 0
See
A144846 for more information on T(n,k).
A144859
Numerators of triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the coefficient of x^(2k+1) in polynomial v_n(x), used to approximate x->sin(Pi*x)/Pi.
Original entry on oeis.org
0, 1, -1, 1, -10, 3, 1, -140, 21, -10, 1, -3360, 1638, -360, 35, 1, -25872, 63756, -2970, 385, -126, 1, -7303296, 720720, -845988, 23023, -9828, 462, 1, -80995200, 39969072, -65739960, 1286285, -114660, 6930, -1716, 1, -57839907840
Offset: 0
0, 1, -1, 1, -10/7, 3/7, 1, -140/87, 21/29, -10/87, 1, -3360/2047, 1638/2047, -360/2047, 35/2047, 1, -25872/15731, 63756/78655, -2970/15731, 385/15731, -126/78655 ... = A144859/A144860
As triangle:
0
1, -1
1, -10/7, 3/7
1, -140/87, 21/29, -10/87
-
v:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||(2*i+1))*x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=0, `if`(n=0,NULL,D(f)(0)=1), seq((D@@i)(f)(1)=-(D@@i)(f)(0), i=2..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1))*x^(2*i+1)', 'i'=0..n) ), x); end: T:= (n,k)-> coeff(v(n)(x), x, 2*k+1): seq(seq(numer(T(n,k)), k=0..n), n=0..9);
-
v[n_] := v[n] = Module[{f, i, x, a}, f[x_] = Sum[a[2*i+1]*x^(2i+1), {i, 0, n}]; Function[x, Sum[a[2*i+1]*x^(2i+1), {i, 0, n}] /. First @ Solve [{f[1] == 0, If[n == 0, True, f'[0] == 1], Sequence @@ Table[Derivative[i][f][1] == -Derivative[i][f][0], {i, 2, n}]}, Table[a[2*i+1], {i, 0, n}]]]]; T[n_, k_] := Coefficient[v[n][x], x, 2*k+1]; Table[Table[Numerator[T[n, k]], {k, 0, n}], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 12 2014, translated from Maple *)
A230142
Numerator of 1/u_n(1/2), where polynomial u_n(x) is used to approximate x->sin(Pi*x)/Pi.
Original entry on oeis.org
16, 256, 5632, 1048576, 80543744, 18185977856, 2823575044096, 4608812904349696, 1194823452775677952, 766890677854432919552, 298370458295691856838656, 184465173199612912007643136, 301475731054794304317414178816, 381273851270136749855228154609664
Offset: 1
16/3, 256/75, 5632/1785, 1048576/333795, 80543744/25638459, 18185977856/5788790007, 2823575044096/898772045457 ... = A230142/A230143
-
u:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=0, seq((D@@i)(f)(1)=`if`(i=1, -1, -(D@@i)(f)(0)), i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n)), x) end: seq(numer(1/u(n)(1/2)), n=1..15);
-
u[n_] := u[n] = Module[{f, i, x, a}, f = Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}]]; Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}] /. First @ Solve[Join[{f[1] == 0}, Table[Derivative[i][f][1] == If[i == 1, -1, -Derivative[i][f][0]], {i, 1, n}]], Table[a[2*i+1], {i, 0, n}]]]]; Table[Numerator[1/u[n][1/2]], {n, 1, 15}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
A230143
Denominator of 1/u_n(1/2), where polynomial u_n(x) is used to approximate x->sin(Pi*x)/Pi.
Original entry on oeis.org
3, 75, 1785, 333795, 25638459, 5788790007, 898772045457, 1467030741832227, 380324118068556519, 244108884436744360605, 94974266622893811200463, 58717088286185620331978925, 95962705639251788100721754775, 121363236202656183485569513082175
Offset: 1
-
u:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n) ), x); unapply(subs(solve({f(1)=0, seq((D@@i)(f)(1)=`if`(i=1, -1, -(D@@i)(f)(0)), i=1..n)}, {seq(cat(a||(2*i+1)), i=0..n)}), sum('cat(a||(2*i+1)) *x^(2*i+1)', 'i'=0..n)), x) end: seq(denom(1/u(n)(1/2)), n=1..15);
-
u[n_] := u[n] = Module[{f, i, x, a}, f = Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}]]; Function[x, Sum[a[2*i+1]*x^(2*i+1), {i, 0, n}] /. First @ Solve[Join[{f[1] == 0}, Table[Derivative[i][f][1] == If[i == 1, -1, -Derivative[i][f][0]], {i, 1, n}]], Table[a[2*i+1], {i, 0, n}]]]]; Table[Denominator[1/u[n][1/2]], {n, 1, 15}] (* Jean-François Alcover, Feb 13 2014, after Maple *)
Showing 1-4 of 4 results.
Comments