A144854 Values of n such that the expression sqrt(4!*(n+1) + 1) yields a perfect power.
25, 99, 609, 650, 1189, 3479, 4901, 5429, 11659, 16275, 29469, 38479, 62525, 73814, 78089, 117739, 142449, 201116, 203319, 240199, 328769, 381275, 406900, 504889, 576909, 743775, 839629, 1005731, 1058819, 1183259, 1464709, 1622919, 1960244
Offset: 1
Keywords
Examples
25 is in the sequence since sqrt(4!*(25+1) + 1) = 25 = 5^2; 99 is in the sequence since sqrt(4!*(99+1) + 1) = 49 = 7^2. - _Jon E. Schoenfield_, Aug 01 2015
Crossrefs
Subset of A144065.
Programs
-
Mathematica
lst = {}; Do[a = Sqrt[4! (n + 1) + 1]; If[IntegerQ@ a && GCD @@ Last /@ FactorInteger@a > 1, AppendTo[lst, n]], {n, 0, 1977428}]; lst (* Robert G. Wilson v, Sep 24 2008 *)
Extensions
More terms from Robert G. Wilson v, Sep 24 2008