A144861 Primitive prime factors of the sequence 2k^2 - 1 in the order in which they are first found.
7, 17, 31, 71, 97, 127, 23, 199, 241, 41, 337, 449, 73, 577, 647, 103, 47, 881, 967, 151, 1151, 1249, 193, 1567, 257, 113, 89, 311, 2311, 79, 2591, 2887, 3041, 457, 3361, 3527, 3697, 4049, 4231, 631, 271, 4801, 4999, 743, 5407, 137, 263, 6271, 6961, 313, 1063
Offset: 2
Keywords
Links
- Bernhard Helmes, Prime sieving on the polynomial f(n)=2n^2-1.
Programs
-
Mathematica
Rest[DeleteDuplicates[#[[1]]&/@(Flatten[FactorInteger/@(2*Range[100]^2-1),1])]] (* Harvey P. Dale, Nov 15 2014 *)
Extensions
Definition clarified by Harvey P. Dale, Nov 15 2014
Comments