cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A144871 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where sequence a_k of column k is shadow transform of C(n+k-1,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 3, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 2, 1, 1, 1, 1, 1, 3, 4, 6, 2, 2, 4, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 4, 4, 3, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 4, 3, 2, 1
Offset: 1

Views

Author

Alois P. Heinz, Sep 23 2008

Keywords

Comments

Row sequences have periods 1, 1, 3, 8, ... given in A144872.

Examples

			Square array begins:
  1, 1, 1, 1, 1, 1, ...
  1, 1, 1, 1, 1, 1, ...
  1, 2, 1, 1, 2, 1, ...
  1, 1, 2, 1, 1, 2, ...
  1, 2, 3, 4, 1, 1, ...
  1, 2, 1, 1, 3, 3, ...
		

Crossrefs

Rows 1+2, 3 give: A000012, A101825.
Periods of the row sequences: A144872.
Cf. A007318.

Programs

  • Maple
    shadow:= proc(p) proc(n) add(`if`(modp(p(j), n)=0, 1, 0), j=0..n-1)
             end end:
    f:= proc(k) proc(n) binomial(n+k-1, k) end end:
    A:= (n, k)-> shadow(f(k))(n):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..20);
  • Mathematica
    shadow[p_] := Function[n, Sum[If[Mod[p[j], n] == 0, 1, 0], {j, 0, n-1}]]; f[k_] := Function[n, Binomial[n+k-1, k]]; a[n_, k_] := shadow[f[k]][n]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 20}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)