A145032 If t(n) is the maximal triangular number not exceeding n, then a(n) is the n-th prime for which a(n)-t(a(n)) is a triangular number.
2, 3, 7, 11, 13, 29, 31, 37, 61, 67, 79, 97, 101, 137, 139, 151, 163, 181, 191, 193, 211, 241, 263, 277, 331, 379, 409, 421, 463, 499, 571, 601, 631, 709, 739, 751, 769, 821, 823, 947, 967, 991, 1063, 1087, 1091, 1109, 1117, 1129, 1231, 1303, 1327, 1381, 1399
Offset: 1
Keywords
Examples
E. g., t(181)=171 (see A000217) and 181-171=10 is triangular number. Therefore p=181 is in the sequence
Programs
-
Maple
Contribution from R. J. Mathar, Oct 25 2010: (Start) A057944 := proc(n) for i from 0 do if i*(i+1)/2 > n then return (i-1)*i /2 ; end if; end do: end proc: isA000217 := proc(n) issqr(8*n+1) ; end proc: isA145032 := proc(p) if isprime(p) then tres := p-A057944(p) ; isA000217(tres) ; else false; end if; end proc: for n from 1 to 400 do p := ithprime(n) ; if isA145032(p) then printf("%d,",p) ; end if; end do: (End)
Extensions
More terms from R. J. Mathar, Oct 25 2010
Comments