cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145032 If t(n) is the maximal triangular number not exceeding n, then a(n) is the n-th prime for which a(n)-t(a(n)) is a triangular number.

Original entry on oeis.org

2, 3, 7, 11, 13, 29, 31, 37, 61, 67, 79, 97, 101, 137, 139, 151, 163, 181, 191, 193, 211, 241, 263, 277, 331, 379, 409, 421, 463, 499, 571, 601, 631, 709, 739, 751, 769, 821, 823, 947, 967, 991, 1063, 1087, 1091, 1109, 1117, 1129, 1231, 1303, 1327, 1381, 1399
Offset: 1

Views

Author

Vladimir Shevelev, Sep 30 2008

Keywords

Comments

Primes p for which p-A057944(p) is in A000217. [From R. J. Mathar, Oct 25 2010]

Examples

			E. g., t(181)=171 (see A000217) and 181-171=10 is triangular number. Therefore p=181 is in the sequence
		

Crossrefs

Programs

  • Maple
    Contribution from R. J. Mathar, Oct 25 2010: (Start)
    A057944 := proc(n) for i from 0 do if i*(i+1)/2 > n then return (i-1)*i /2 ; end if; end do: end proc:
    isA000217 := proc(n) issqr(8*n+1) ; end proc:
    isA145032 := proc(p) if isprime(p) then tres := p-A057944(p) ; isA000217(tres) ; else false; end if; end proc:
    for n from 1 to 400 do p := ithprime(n) ; if isA145032(p) then printf("%d,",p) ; end if; end do: (End)

Extensions

More terms from R. J. Mathar, Oct 25 2010