A145138 Main diagonal of square array A145153.
0, 1, 2, 6, 20, 71, 259, 960, 3597, 13586, 51635, 197223, 756380, 2910707, 11233311, 43460144, 168502849, 654547456, 2546819347, 9924285801, 38723794820, 151278566731, 591628491483, 2316065644414, 9074988880769, 35587925333525, 139666503235814, 548516611541343
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
a:= n-> coeftayl(x/(1-x-x^4)/(1-x)^(n-1), x=0, n): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n<5, n*(n+1)*(n^2-4*n+6)/6, a(n-4)+(2*(35*n^3-207*n^2+310*n-78)*a(n-1)-(203*n^3 -1244*n^2+1891*n-130)*a(n-2)+(2*n-7)*(7*n-19)*n* (10*a(n-3)-2*a(n-5)))/((7*n-26)*(n-1)^2)) end: seq(a(n), n=0..30); # Alois P. Heinz, Aug 18 2019
-
Mathematica
a[n_] := SeriesCoefficient[x/(1-x-x^4)/(1-x)^(n-1), {x, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 10 2022 *)
Formula
a(n) = [x^n] x/((1-x-x^4)*(1-x)^(n-1)).