A145140 Numerators of triangle T(n,k), n>=1, 0<=k<=n - 1, read by rows: T(n,k) is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 11, 1, 1, 1, 6, 5, 7, 1, 1, 1, 5, 317, 5, 17, 1, 1, 1, 83, 27, 22, 7, 5, 1, 1, 2, 53, 5989, 1069, 1207, 7, 23, 1, 1, 3, 611, 2743, 93791, 149, 1213, 1, 13, 1, 1, 4, 101, 25523, 5419, 20071, 397, 3253, 1, 29, 1, 1, 5, 32419, 11017, 30731, 21757
Offset: 1
Examples
1, 0, 1, 0, 1/2, 1/2, 0, 1/3, 1/2, 1/6, 1, 1/4, 11/24, 1/4, 1/24, 1, 6/5, 5/12, 7/24, 1/12, 1/120, 1, 5/3, 317/360, 5/16, 17/144, 1/48, 1/720 ... = A145140/A145141 As triangle: 1 0 1 0 1/2 1/2 0 1/3 1/2 1/6 1 1/4 11/24 1/4 1/24 1 6/5 5/12 7/24 1/12 1/120
Crossrefs
Programs
-
Maple
row:= proc(n) option remember; local f,i,x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n,k)-> coeff(row(n)(x), x, k): seq(seq(numer(T(n,k)), k=0..n-1), n=1..14);
-
Mathematica
row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n] // Numerator, {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)
Formula
See program.