A145141 Denominators of triangle T(n,k), n>=1, 0<=k<=n - 1, read by rows: T(n,k) is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153.
1, 1, 1, 1, 2, 2, 1, 3, 2, 6, 1, 4, 24, 4, 24, 1, 5, 12, 24, 12, 120, 1, 3, 360, 16, 144, 48, 720, 1, 42, 20, 45, 48, 144, 240, 5040, 1, 24, 3360, 1440, 5760, 144, 2880, 1440, 40320, 1, 180, 1260, 90720, 480, 17280, 80, 8640, 10080, 362880, 1, 20, 8400, 4032, 45360
Offset: 1
Programs
-
Maple
seq(seq(denom(T(n,k)), k=0..n-1), n=1..14);
-
Mathematica
row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n] // Denominator, {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)