A145156 Number of Greek-key tours on a 5 X n board; i.e., self-avoiding walks on 5 X n grid starting in top left corner.
1, 5, 38, 160, 824, 3501, 16262, 68591, 304177, 1276805, 5522791, 23117164, 98562435, 411870513, 1740941765, 7267608829, 30557297042, 127482101761, 534250130959, 2227966210989, 9317736040747, 38847892461656, 162258421050635, 676389635980185, 2822813259030961, 11766012342819549
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Nathaniel Johnston, Self-avoiding walks table of values
- Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height, arXiv:2407.18205 [math.CO], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (4,14,-54,-33,117,2,-84,-6,9,0,-14,0,-2).
Formula
G.f.: -x*(3*x^13 -3*x^12 +17*x^11 -11*x^10 +11*x^9 -21*x^8 +67*x^7 -29*x^6 -65*x^5 +45*x^4 +8*x^3 -4*x^2 -x -1) / ((x +1)*(x^6 -x^5 +8*x^4 -8*x^3 -2*x^2 +5*x -1)*(2*x^6 +11*x^2 -1)). [conjectured by Colin Barker, Nov 09 2015; proved by Jay Pantone, Klotz, and Sullivan, Aug 01 2024]
Extensions
a(11)-a(15) added by Nathaniel Johnston, Oct 12 2008
a(16) added by Ruben Zilibowitz, Jul 10 2015
a(17) onwards from Andrew Howroyd, Nov 07 2015
Comments