cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A145162 G.f. A(x) satisfies A(x/A(x)^4) = 1/(1-x).

Original entry on oeis.org

1, 1, 5, 51, 757, 14058, 303443, 7313188, 192096189, 5413972155, 161972306602, 5104569475976, 168500227127871, 5800706769824992, 207552636468976072, 7697809237540240440, 295284422299359774761, 11693774821978063710405
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A^4);A=1/(1-B));polcoeff(A,n)}

Formula

G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^4.
Self-convolution square yields A145163.
Self-convolution 4th power yields A145164.

A145164 G.f. A(x) satisfies A(x/A(x)) = 1/(1-x)^4.

Original entry on oeis.org

1, 4, 26, 268, 3851, 69308, 1459552, 34513468, 893162569, 24873809192, 736914860764, 23034718900652, 755096654861093, 25838920473462512, 919688365896843632, 33951797935609852260, 1296987353334993492885
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n),B);for(n=0,n,B=serreverse(x/A);A=1/(1-B)^4);polcoeff(A,n)}

Formula

Self-convolution 4th power of A145162.
Self-convolution square of A145163.
Showing 1-2 of 2 results.