A192988 Smallest number whose representation requires n pentagonal numbers with greedy algorithm.
1, 2, 3, 4, 9, 21, 91, 1517, 385318, 24745571498, 102057218155974827415, 1735945962956039658808082636319818286550
Offset: 1
Keywords
Examples
a(7)=91 since 91 = 70 + 12 + 5 + 1 + 1 + 1 + 1.
Crossrefs
Cf. A145172.
Programs
-
Mathematica
a[1] = 1; a[n_] := a[n] = Ceiling[a[n - 1]/3]*(3*Ceiling[a[n - 1]/3] - 1)/2 + a[n - 1]; Table[a[n], {n, 15}] (* T. D. Noe, Jul 13 2011 *)
Formula
a(n+1) = ceiling(a(n)/3)*(3*ceiling(a(n)/3)-1)/2 + a(n), a(1) = 1.