A145191 Numbers m such that Sum_{i=1..m} omega(i)^2 is divisible by m, where omega is A001221.
1, 20, 68, 903, 3876, 3890, 19096, 19122, 19127, 110990, 111004, 111007, 111010, 111013, 774276, 774277, 774278, 774279, 774303, 774313, 774314, 774315, 6615593, 70607550, 70607559, 959878582, 959878737, 959878753, 959878836, 959878846, 959878888, 959878902, 959878914
Offset: 1
Keywords
Programs
-
Mathematica
With[{max = 10^5}, Position[Accumulate[PrimeNu[Range[max]]^2]/Range[max], ?IntegerQ] // Flatten] (* _Amiram Eldar, Sep 22 2024 *)
-
PARI
isok(m) = !frac(sum(i=1, m, omega(i)^2)/m); \\ Michel Marcus, Mar 15 2022
-
PARI
lista(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", ")););} \\ Michel Marcus, Mar 16 2022
-
PARI
listaa(nn) = {my(v = vector(nn, k, omega(k)^2)); print1(1, ", "); for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/n), print1(n, ", "));); for (m=1, 100, last = v[nn]; v = vector(nn, k, omega(k+m*nn)^2); v[1] += last; for (n=2, nn, v[n] += v[n-1]; if (! frac(v[n]/(m*nn+n)), print1(n+m*nn, ", "));););} \\ Michel Marcus, Mar 16 2022
Extensions
a(7)-a(9) from Michel Marcus, Mar 15 2022
a(10)-a(25) from Michel Marcus, Mar 16 2022
a(26)-a(33) from Amiram Eldar, Sep 22 2024
Comments