cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A274972 Numbers x such that there exists n in N : (x+1)^3 - x^3 = 61*n^2.

Original entry on oeis.org

4, 4387, 4273420, 4162307179, 4054082919412, 3948672601200595, 3846003059486460604, 3746003031267211428187, 3648603106451204444594020, 3553735679680441861823147779, 3461334903405643922211301343212, 3371336642181417499791945685141195
Offset: 1

Views

Author

Colin Barker, Jul 13 2016

Keywords

Examples

			4387 is in the sequence because ((4387+1)^3-4387^3)/61 = 946729 = 973^2.
		

Crossrefs

Programs

  • PARI
    Vec(x*(4+487*x-5*x^2)/((1-x)*(1-974*x+x^2)) + O(x^20))
    
  • PARI
    isok(x) = issquare(((x+1)^3-x^3)/61)

Formula

G.f.: x*(4+487*x-5*x^2) / ((1-x)*(1-974*x+x^2)).
a(n) = 975*a(n-1)-975*a(n-2)+a(n-3) for n>3.
a(n) = (-6-(27+2*sqrt(183))*(487+36*sqrt(183))^(-n)+(-27+2*sqrt(183))*(487+36*sqrt(183))^n)/12.

A274971 Numbers k such that (x+1)^3 - x^3 = k*y^2 has integer solutions.

Original entry on oeis.org

1, 7, 19, 31, 37, 43, 61, 67, 79, 91, 103, 127, 139, 151, 157, 163, 169, 199, 211, 217, 223, 247, 271, 283, 307, 313, 331, 343, 349, 367, 373, 379, 397, 403, 427, 439, 463, 469, 487, 499, 511, 523, 547, 553, 571, 577, 607, 613, 619, 631, 643, 661, 679, 691
Offset: 1

Views

Author

Colin Barker, Jul 13 2016

Keywords

Examples

			7 is in the sequence because, for instance, (167^3-166^3)/7 = 11881 = 109^2.
		

Crossrefs

Cf. A001921 (k=1), A144929 (k=7), A145124 (k=19), A145323 (k=31), A145700 (k=37), A145336 (k=43), A274972 (k=61), A145212 (k=67), A145309 (k=79), A145530 (k=91), A147530 (k=103), A145720 (k=127).
Cf. A003215 is a subsequence; A004611 contains this sequence.

Programs

  • Mathematica
    A004611=Select[Range[500],And@@(Mod[#,3]==1&)/@(First/@FactorInteger[#])&]; Select[A004611,Reduce[x^2+3== 12*#*y^2,{x,y},Integers]=!=False &] (* Ray Chandler, Jul 24 2016 *)

Extensions

More terms using solver at Alpern link by Ray Chandler, Jul 23 2016
Showing 1-2 of 2 results.