cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A145218 a(n) is the self-convolution series of the sum of 5th powers of the first n natural numbers.

Original entry on oeis.org

1, 64, 1510, 17600, 130835, 713216, 3098604, 11320320, 36074325, 102925120, 268038706, 646519744, 1460878055, 3120396800, 6346379480, 12363588096, 23184837609, 42023883840, 73881649150, 126362703040, 210792998011, 343726413824, 548946959300, 860095808000
Offset: 1

Views

Author

Abdullahi Umar, Oct 05 2008

Keywords

Examples

			a(3) = 1510 because 1(3^5)+(2^5)(2^5)+(3^5)1= 1510
		

References

  • A. Umar, B. Yushau and B. M. Ghandi, (2006), "Patterns in convolution of two series", in Stewart, S. M., Olearski, J. E. and Thompson, D. (Eds), Proceedings of the Second Annual Conference for Middle East Teachers of Science, Mathematics and Computing (pp. 95-101). METSMaC: Abu Dhabi.
  • A. Umar, B. Yushau and B. M. Ghandi, "Convolution of two series", Australian Senior Maths. Journal, 21(2) (2007), 6-11.

Crossrefs

a(n)=Conv(A000539, A000539)

Programs

  • Magma
    [Binomial(n+2,3)*(n^8+8*n^7+29*n^6+62*n^5+86*n^4 +80*n^3+28*n^2-24*n+192)/462: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
  • Maple
    f:=n->(n^11-22*n^5+231*n^3-210*n)/2772;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    CoefficientList[Series[(x^4 + 26 x^3 + 66 x^2 + 26 x + 1)^2/(x - 1)^12, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)

Formula

a(n) = C(n+2, 3)*(n^8 + 8*n^7 + 29*n^6 + 62*n^5 + 86*n^4 + 80*n^3 + 28*n^2 - 24*n + 192)/462.
G.f.: x*(x^4 + 26*x^3 + 66*x^2 + 26*x + 1)^2/(x-1)^12. [Colin Barker, Jul 08 2012]