A145224 Triangle read by rows: T(n,k) is the number of even permutations (of an n-set) with exactly k fixed points.
1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 8, 0, 0, 1, 24, 15, 20, 0, 0, 1, 130, 144, 45, 40, 0, 0, 1, 930, 910, 504, 105, 70, 0, 0, 1, 7413, 7440, 3640, 1344, 210, 112, 0, 0, 1, 66752, 66717, 33480, 10920, 3024, 378, 168, 0, 0, 1
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, 0, 1; 2, 0, 0, 1; 3, 8, 0, 0, 1; 24, 15, 20, 0, 0, 1; ...
Links
- Bashir Ali and A. Umar, Some combinatorial properties of the alternating group, Southeast Asian Bulletin Math. 32 (2008), 823-830.
Crossrefs
Formula
T(n,k) = C(n,k)*A003221(n-k).
E.g.f.: (x^k(1-x^2/2) e^(-x))/k!(1-x).