cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A055137 Regard triangle of rencontres numbers (see A008290) as infinite matrix, compute inverse, read by rows.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -2, -3, 0, 1, -3, -8, -6, 0, 1, -4, -15, -20, -10, 0, 1, -5, -24, -45, -40, -15, 0, 1, -6, -35, -84, -105, -70, -21, 0, 1, -7, -48, -140, -224, -210, -112, -28, 0, 1, -8, -63, -216, -420, -504, -378, -168, -36, 0, 1, -9, -80, -315, -720
Offset: 0

Views

Author

Christian G. Bower, Apr 25 2000

Keywords

Comments

The n-th row consists of coefficients of the characteristic polynomial of the adjacency matrix of the complete n-graph.
Triangle of coefficients of det(M(n)) where M(n) is the n X n matrix m(i,j)=x if i=j, m(i,j)=i/j otherwise. - Benoit Cloitre, Feb 01 2003
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for rB(0,1). The e.g.f. for the row polynomials is exp(x*t) * exp(x) *(1-x). T(n,k) = Binomial(n,k)* s(n-k) where s = (1,0,-1,-2,-3,...) with an e.g.f. of exp(x)*(1-x) which is the reciprocal of the e.g.f. of A000166. - Tom Copeland, Sep 10 2008
Row sums are: {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...}. - Roger L. Bagula, Feb 20 2009
T is related to an operational calculus connecting an infinitesimal generator for fractional integro-derivatives with the values of the Riemann zeta function at positive integers (see MathOverflow links). - Tom Copeland, Nov 02 2012
The submatrix below the null subdiagonal is signed and row reversed A127717. The submatrix below the diagonal is A074909(n,k)s(n-k) where s(n)= -n, i.e., multiply the n-th diagonal by -n. A074909 and its reverse A135278 have several combinatorial interpretations. - Tom Copeland, Nov 04 2012
T(n,k) is the difference between the number of even (A145224) and odd (A145225) permutations (of an n-set) with exactly k fixed points. - Julian Hatfield Iacoponi, Aug 08 2024

Examples

			1; 0,1; -1,0,1; -2,-3,0,1; -3,-8,-6,0,1; ...
(Bagula's matrix has a different sign convention from the list.)
From _Roger L. Bagula_, Feb 20 2009: (Start)
  { 1},
  { 0,   1},
  {-1,   0,    1},
  { 2,  -3,    0,    1},
  {-3,   8,   -6,    0,     1},
  { 4, -15,   20,  -10,     0,    1},
  {-5,  24,  -45,   40,   -15,    0,    1},
  { 6, -35,   84, -105,    70,  -21,    0,   1},
  {-7,  48, -140,  224,  -210,  112,  -28,   0,   1},
  { 8, -63,  216, -420,   504, -378,  168, -36,   0, 1},
  {-9,  80, -315,  720, -1050, 1008, -630, 240, -45, 0, 1}
(End)
R(3,x) = (-1)^3*Sum_{permutations p in S_3} sign(p)*(-x)^(fix(p)).
    p   | fix(p) | sign(p) | (-1)^3*sign(p)*(-x)^fix(p)
========+========+=========+===========================
  (123) |    3   |    +1   |      x^3
  (132) |    1   |    -1   |       -x
  (213) |    1   |    -1   |       -x
  (231) |    0   |    +1   |       -1
  (312) |    0   |    +1   |       -1
  (321) |    1   |    -1   |       -x
========+========+=========+===========================
                           | R(3,x) = x^3 - 3*x - 2
- _Peter Bala_, Aug 08 2011
		

References

  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. p. 17.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p.184 problem 3.

Crossrefs

Cf. A005563, A005564 (absolute values of columns 1, 2).
Cf. A000312.

Programs

  • Mathematica
    M[n_] := Table[If[i == j, x, 1], {i, 1, n}, {j, 1, n}]; a = Join[{{1}}, Flatten[Table[CoefficientList[Det[M[n]], x], {n, 1, 10}]]] (* Roger L. Bagula, Feb 20 2009 *)
    t[n_, k_] := (k-n+1)*Binomial[n, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2013, after Pari *)
  • PARI
    T(n,k)=(1-n+k)*if(k<0 || k>n,0,n!/k!/(n-k)!)

Formula

G.f.: (x-n+1)*(x+1)^(n-1) = Sum_(k=0..n) T(n,k) x^k.
T(n, k) = (1-n+k)*binomial(n, k).
k-th column has o.g.f. x^k(1-(k+2)x)/(1-x)^(k+2). k-th row gives coefficients of (x-k)(x+1)^k. - Paul Barry, Jan 25 2004
T(n,k) = Coefficientslist[Det[Table[If[i == j, x, 1], {i, 1, n}, {k, 1, n}],x]. - Roger L. Bagula, Feb 20 2009
From Peter Bala, Aug 08 2011: (Start)
Given a permutation p belonging to the symmetric group S_n, let fix(p) be the number of fixed points of p and sign(p) its parity. The row polynomials R(n,x) have a combinatorial interpretation as R(n,x) = (-1)^n*Sum_{permutations p in S_n} sign(p)*(-x)^(fix(p)). An example is given below.
Note: The polynomials P(n,x) = Sum_{permutations p in S_n} x^(fix(p)) are the row polynomials of the rencontres numbers A008290. The integral results Integral_{x = 0..n} R(n,x) dx = n/(n+1) = Integral_{x = 0..-1} R(n,x) dx lead to the identities Sum_{p in S_n} sign(p)*(-n)^(1 + fix(p))/(1 + fix(p)) = (-1)^(n+1)*n/(n+1) = Sum_{p in S_n} sign(p)/(1 + fix(p)). The latter equality was Problem B6 in the 66th William Lowell Putnam Mathematical Competition 2005. (End)
From Tom Copeland, Jul 26 2017: (Start)
The e.g.f. in Copeland's 2008 comment implies this entry is an Appell sequence of polynomials P(n,x) with lowering and raising operators L = d/dx and R = x + d/dL log[exp(L)(1-L)] = x+1 - 1/(1-L) = x - L - L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L) exp(L) x^n = (1-L) (x+1)^n = (x+1)^n - n (x+1)^(n-1) = (x+1-n)(x+1)^(n-1) = (x+s.)^n umbrally, where (s.)^n = s_n = P(n,0).
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
The exponential infinitesimal generator (infinigen) of this entry is the negated infinigen of A008290, the matrix (M) noted by Bala, related to A238363. Then e^M = [the lower triangular A008290], and e^(-M) = [the lower triangular A055137]. For more on the infinigens, see A238385. (End)
From the row g.f.s corresponding to Bagula's matrix example below, the n-th row polynomial has a zero of multiplicity n-1 at x = 1 and a zero at x = -n+1. Since this is an Appell sequence dP_n(x)/dx = n P_{n-1}(x), the critical points of P_n(x) have the same abscissas as the zeros of P_{n-1}(x); therefore, x = 1 is an inflection point for the polynomials of degree > 2 with P_n(1) = 0, and the one local extremum of P_n has the abscissa x = -n + 2 with the value (-n+1)^{n-1}, signed values of A000312. - Tom Copeland, Nov 15 2019
From Julian Hatfield Iacoponi, Aug 08 2024: (Start)
T(n,k) = A145224(n,k) - A145225(n,k).
T(n,k) = binomial(n,k)*(A003221(n-k)-A000387(n-k)). (End)

Extensions

Additional comments from Michael Somos, Jul 04 2002

A145225 Triangle read by rows: T(n,k) is the number of odd permutations (of an n-set) with exactly k fixed points.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 20, 30, 0, 10, 0, 0, 135, 120, 90, 0, 15, 0, 0, 924, 945, 420, 210, 0, 21, 0, 0, 7420, 7392, 3780, 1120, 420, 0, 28, 0, 0, 66744, 66780, 33264, 11340, 2520, 756, 0, 36, 0, 0
Offset: 0

Views

Author

Abdullahi Umar, Oct 10 2008

Keywords

Examples

			Triangle starts:
   0;
   0,  0;
   1,  0, 0;
   0,  3, 0,  0;
   6,  0, 6,  0, 0;
  20, 30, 0, 10, 0, 0;
  ...
		

Crossrefs

Row sums are A001710 for n > 1.
Columns k=0..2 are A000387, A145222, A145223.

Programs

  • Maple
    A145225 := proc(n,k)
        binomial(n,k)*A000387(n-k) ; # re-use code of A000387
    end proc:
    seq(seq(A145225(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 06 2023
  • Mathematica
    A145225[n_, k_] := Binomial[n, k]*Binomial[n - k, 2]*Subfactorial[n - k - 2];
    Table[A145225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 31 2025 *)

Formula

T(n,k) = C(n,k) * A000387(n-k).
E.g.f.: x^(k+2) * exp(-x) / (2*k!*(1-x)).
T(n,k) + A145224(n,k) = A008290(n,k). - R. J. Mathar, Jul 06 2023
T(n,k) = (A008290(n,k) - A055137(n,k)) / 2. - Julian Hatfield Iacoponi, Aug 08 2024
Showing 1-3 of 3 results.