cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A000312 a(n) = n^n; number of labeled mappings from n points to themselves (endofunctions).

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 10000000000, 285311670611, 8916100448256, 302875106592253, 11112006825558016, 437893890380859375, 18446744073709551616, 827240261886336764177, 39346408075296537575424, 1978419655660313589123979
Offset: 0

Views

Author

Keywords

Comments

Also number of labeled pointed rooted trees (or vertebrates) on n nodes.
For n >= 1 a(n) is also the number of n X n (0,1) matrices in which each row contains exactly one entry equal to 1. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
Also the number of labeled rooted trees on (n+1) nodes such that the root is lower than its children. Also the number of alternating labeled rooted ordered trees on (n+1) nodes such that the root is lower than its children. - Cedric Chauve (chauve(AT)lacim.uqam.ca), Mar 27 2002
With p(n) = the number of integer partitions of n, p(i) = the number of parts of the i-th partition of n, d(i) = the number of different parts of the i-th partition of n, p(j, i) = the j-th part of the i-th partition of n, m(i, j) = multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i=1..p(n)} (n!/(Product_{j=1..p(i)} p(i, j)!)) * ((n!/(n - p(i)))!/(Product_{j=1..d(i)} m(i, j)!)). - Thomas Wieder, May 18 2005
All rational solutions to the equation x^y = y^x, with x < y, are given by x = A000169(n+1)/A000312(n), y = A000312(n+1)/A007778(n), where n = 1, 2, 3, ... . - Nick Hobson, Nov 30 2006
a(n) is the total number of leaves in all (n+1)^(n-1) trees on {0,1,2,...,n} rooted at 0. For example, with edges directed away from the root, the trees on {0,1,2} are {0->1,0->2},{0->1->2},{0->2->1} and contain a total of a(2)=4 leaves. - David Callan, Feb 01 2007
Limit_{n->infinity} A000169(n+1)/a(n) = exp(1). Convergence is slow, e.g., it takes n > 74 to get one decimal place correct and n > 163 to get two of them. - Alonso del Arte, Jun 20 2011
Also smallest k such that binomial(k, n) is divisible by n^(n-1), n > 0. - Michel Lagneau, Jul 29 2013
For n >= 2 a(n) is represented in base n as "one followed by n zeros". - R. J. Cano, Aug 22 2014
Number of length-n words over the alphabet of n letters. - Joerg Arndt, May 15 2015
Number of prime parking functions of length n+1. - Rui Duarte, Jul 27 2015
The probability density functions p(x, m=q, n=q, mu=1) = A000312(q)*E(x, q, q) and p(x, m=q, n=1, mu=q) = (A000312(q)/A000142(q-1))*x^(q-1)*E(x, q, 1), with q >= 1, lead to this sequence, see A163931, A274181 and A008276. - Johannes W. Meijer, Jun 17 2016
Satisfies Benford's law [Miller, 2015]. - N. J. A. Sloane, Feb 12 2017
A signed version of this sequence apart from the first term (1, -4, -27, 256, 3125, -46656, ...), has the following property: for every prime p == 1 (mod 2n), (-1)^(n(n-1)/2)*n^n = A057077(n)*a(n) is always a 2n-th power residue modulo p. - Jianing Song, Sep 05 2018
From Juhani Heino, May 07 2019: (Start)
n^n is both Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)
and Sum_{i=0..n} binomial(n,i)*(n-1)^(n-i)*i.
The former is the familiar binomial distribution of a throw of n n-sided dice, according to how many times a required side appears, 0 to n. The latter is the same but each term is multiplied by its amount. This means that if the bank pays the player 1 token for each die that has the chosen side, it is always a fair game if the player pays 1 token to enter - neither bank nor player wins on average.
Examples:
2-sided dice (2 coins): 4 = 1 + 2 + 1 = 1*0 + 2*1 + 1*2 (0 omitted from now on);
3-sided dice (3 long triangular prisms): 27 = 8 + 12 + 6 + 1 = 12*1 + 6*2 + 1*3;
4-sided dice (4 long square prisms or 4 tetrahedrons): 256 = 81 + 108 + 54 + 12 + 1 = 108*1 + 54*2 + 12*3 + 1*4;
5-sided dice (5 long pentagonal prisms): 3125 = 1024 + 1280 + 640 + 160 + 20 + 1 = 1280*1 + 640*2 + 160*3 + 20*4 + 1*5;
6-sided dice (6 cubes): 46656 = 15625 + 18750 + 9375 + 2500 + 375 + 30 + 1 = 18750*1 + 9375*2 + 2500*3 + 375*4 + 30*5 + 1*6.
(End)
For each n >= 1 there is a graph on a(n) vertices whose largest independent set has size n and whose independent set sequence is constant (specifically, for each k=1,2,...,n, the graph has n^n independent sets of size k). There is no graph of smaller order with this property (Ball et al. 2019). - David Galvin, Jun 13 2019
For n >= 2 and 1 <= k <= n, a(n)*(n + 1)/4 + a(n)*(k - 1)*(n + 1 - k)/2*n is equal to the sum over all words w = w(1)...w(n) of length n over the alphabet {1, 2, ..., n} of the following quantity: Sum_{i=1..w(k)} w(i). Inspired by Problem 12432 in the AMM (see links). - Sela Fried, Dec 10 2023
Also, dimension of the unique cohomology group of the smallest interval containing the poset of partitions decorated by Perm, i.e. the poset of pointed partitions. - Bérénice Delcroix-Oger, Jun 25 2025

Examples

			G.f. = 1 + x + 4*x^2 + 27*x^3 + 256*x^4 + 3125*x^5 + 46656*x^6 + 823543*x^7 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 62, 63, 87.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 173, #39.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First column of triangle A055858. Row sums of A066324.
Cf. A001923 (partial sums), A002109 (partial products), A007781 (first differences), A066588 (sum of digits).
Cf. A056665, A081721, A130293, A168658, A275549-A275558 (various classes of endofunctions).

Programs

  • Haskell
    a000312 n = n ^ n
    a000312_list = zipWith (^) [0..] [0..]  -- Reinhard Zumkeller, Jul 07 2012
    
  • Maple
    A000312 := n->n^n: seq(A000312(n), n=0..17);
  • Mathematica
    Array[ #^# &, 16] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    Table[Sum[StirlingS2[n, i] i! Binomial[n, i], {i, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 17 2009 *)
    a[ n_] := If[ n < 1, Boole[n == 0], n^n]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 / (1 + LambertW[-x]), {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[n < 0, 0, n! SeriesCoefficient[ Nest[ 1 / (1 - x / (1 - Integrate[#, x])) &, 1 + O[x], n], {x, 0, n}]]; (* Michael Somos, May 24 2014 *)
    a[ n_] := If[ n < 0, 0, With[{m = n + 1}, m! SeriesCoefficient[ InverseSeries[ Series[ (x - 1) Log[1 - x], {x, 0, m}]], m]]]; (* Michael Somos, May 24 2014 *)
  • Maxima
    A000312[n]:=if n=0 then 1 else n^n$
    makelist(A000312[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    {a(n) = n^n};
    
  • PARI
    is(n)=my(b,k=ispower(n,,&b));if(k,for(e=1,valuation(k,b), if(k/b^e == e, return(1)))); n==1 \\ Charles R Greathouse IV, Jan 14 2013
    
  • PARI
    {a(n) = my(A = 1 + O(x)); if( n<0, 0, for(k=1, n, A = 1 / (1 - x / (1 - intformal( A)))); n! * polcoeff( A, n))}; /* Michael Somos, May 24 2014 */
    
  • Python
    def A000312(n): return n**n # Chai Wah Wu, Nov 07 2022

Formula

a(n-1) = -Sum_{i=1..n} (-1)^i*i*n^(n-1-i)*binomial(n, i). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
E.g.f.: 1/(1 + W(-x)), W(x) = principal branch of Lambert's function.
a(n) = Sum_{k>=0} binomial(n, k)*Stirling2(n, k)*k! = Sum_{k>=0} A008279(n,k)*A048993(n,k) = Sum_{k>=0} A019538(n,k)*A007318(n,k). - Philippe Deléham, Dec 14 2003
E.g.f.: 1/(1 - T), where T = T(x) is Euler's tree function (see A000169).
a(n) = A000169(n+1)*A128433(n+1,1)/A128434(n+1,1). - Reinhard Zumkeller, Mar 03 2007
Comment on power series with denominators a(n): Let f(x) = 1 + Sum_{n>=1} x^n/n^n. Then as x -> infinity, f(x) ~ exp(x/e)*sqrt(2*Pi*x/e). - Philippe Flajolet, Sep 11 2008
E.g.f.: 1 - exp(W(-x)) with an offset of 1 where W(x) = principal branch of Lambert's function. - Vladimir Kruchinin, Sep 15 2010
a(n) = (n-1)*a(n-1) + Sum_{i=1..n} binomial(n, i)*a(i-1)*a(n-i). - Vladimir Shevelev, Sep 30 2010
With an offset of 1, the e.g.f. is the compositional inverse ((x - 1)*log(1 - x))^(-1) = x + x^2/2! + 4*x^3/3! + 27*x^4/4! + .... - Peter Bala, Dec 09 2011
a(n) = denominator((1 + 1/n)^n) for n > 0. - Jean-François Alcover, Jan 14 2013
a(n) = A089072(n,n) for n > 0. - Reinhard Zumkeller, Mar 18 2013
a(n) = (n-1)^(n-1)*(2*n) + Sum_{i=1..n-2} binomial(n, i)*(i^i*(n-i-1)^(n-i-1)), n > 1, a(0) = 1, a(1) = 1. - Vladimir Kruchinin, Nov 28 2014
log(a(n)) = lim_{k->infinity} k*(n^(1+1/k) - n). - Richard R. Forberg, Feb 04 2015
From Ilya Gutkovskiy, Jun 18 2016: (Start)
Sum_{n>=1} 1/a(n) = 1.291285997... = A073009.
Sum_{n>=1} 1/a(n)^2 = 1.063887103... = A086648.
Sum_{n>=1} n!/a(n) = 1.879853862... = A094082. (End)
A000169(n+1)/a(n) -> e, as n -> oo. - Daniel Suteu, Jul 23 2016
a(n) = n!*Product_{k=1..n} binomial(n, k)/Product_{k=1..n-1} binomial(n-1, k) = n!*A001142(n)/A001142(n-1). - Tony Foster III, Sep 05 2018
a(n-1) = abs(p_n(2-n)), for n > 2, the single local extremum of the n-th row polynomial of A055137 with Bagula's sign convention. - Tom Copeland, Nov 15 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = A083648. - Amiram Eldar, Jun 25 2021
Limit_{n->oo} (a(n+1)/a(n) - a(n)/a(n-1)) = e (see Brothers/Knox link). - Harlan J. Brothers, Oct 24 2021
Conjecture: a(n) = Sum_{i=0..n} A048994(n, i) * A048993(n+i, n) for n >= 0; proved by Mike Earnest, see link at A354797. - Werner Schulte, Jun 19 2022

A008290 Triangle T(n,k) of rencontres numbers (number of permutations of n elements with k fixed points).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 9, 8, 6, 0, 1, 44, 45, 20, 10, 0, 1, 265, 264, 135, 40, 15, 0, 1, 1854, 1855, 924, 315, 70, 21, 0, 1, 14833, 14832, 7420, 2464, 630, 112, 28, 0, 1, 133496, 133497, 66744, 22260, 5544, 1134, 168, 36, 0, 1, 1334961, 1334960, 667485, 222480, 55650, 11088, 1890, 240, 45, 0, 1
Offset: 0

Views

Author

Keywords

Comments

This is a binomial convolution triangle (Sheffer triangle) of the Appell type: (exp(-x)/(1-x),x), i.e., the e.g.f. of column k is (exp(-x)/(1-x))*(x^k/k!). See the e.g.f. given by V. Jovovic below. - Wolfdieter Lang, Jan 21 2008
The formula T(n,k) = binomial(n,k)*A000166(n-k), with the derangements numbers (subfactorials) A000166 (see also the Charalambides reference) shows the Appell type of this triangle. - Wolfdieter Lang, Jan 21 2008
T(n,k) is the number of permutations of {1,2,...,n} having k pairs of consecutive right-to-left minima (0 is considered a right-to-left minimum for each permutation). Example: T(4,2)=6 because we have 1243, 1423, 4123, 1324, 3124 and 2134; for example, 1324 has right-to-left minima in positions 0-1,3-4 and 2134 has right-to-left minima in positions 0,2-3-4, the consecutive ones being joined by "-". - Emeric Deutsch, Mar 29 2008
T is an example of the group of matrices outlined in the table in A132382--the associated matrix for the sequence aC(0,1). - Tom Copeland, Sep 10 2008
A refinement of this triangle is given by A036039. - Tom Copeland, Nov 06 2012
This triangle equals (A211229(2*n,2*k)) n,k >= 0. - Peter Bala, Dec 17 2014

Examples

			exp((y-1)*x)/(1-x) = 1 + y*x + (1/2!)*(1+y^2)*x^2 + (1/3!)*(2 + 3*y + y^3)*x^3 + (1/4!)*(9 + 8*y + 6*y^2 + y^4)*x^4 + (1/5!)*(44 + 45*y + 20*y^2 + 10*y^3 + y^5)*x^5 + ...
Triangle begins:
       1
       0      1
       1      0     1
       2      3     0     1
       9      8     6     0    1
      44     45    20    10    0    1
     265    264   135    40   15    0   1
    1854   1855   924   315   70   21   0  1
   14833  14832  7420  2464  630  112  28  0 1
  133496 133497 66744 22260 5544 1134 168 36 0 1
...
From _Peter Bala_, Feb 13 2017: (Start)
The infinitesimal generator has integer entries given by binomial(n,k)*(n-k-1)! for n >= 2 and 0 <= k <= n-2 and begins
   0
   0  0
   1  0  0
   2  3  0  0
   6  8  6  0 0
  24 30 20 10 0 0
...
It is essentially A238363 (unsigned and omitting the main diagonal), A211603 (with different offset) and appears to be A092271, again without the main diagonal. (End)
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 173, Table 5.2 (without row n=0 and column k=0).
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 194.
  • Arnold Kaufmann, Introduction à la combinatorique en vue des applications, Dunod, Paris, 1968. See p. 92.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.

Crossrefs

Mirror of triangle A098825.
Cf. A080955.
Cf. A000012, A000142 (row sums), A000354.
Cf. A170942. Sub-triangle of A211229.
T(2n,n) gives A281262.

Programs

  • Haskell
    a008290 n k = a008290_tabl !! n !! k
    a008290_row n = a008290_tabl !! n
    a008290_tabl = map reverse a098825_tabl
    -- Reinhard Zumkeller, Dec 16 2013
  • Maple
    T:= proc(n,k) T(n, k):= `if`(k=0, `if`(n<2, 1-n, (n-1)*
          (T(n-1, 0)+T(n-2, 0))), binomial(n, k)*T(n-k, 0))
        end:
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Mar 15 2013
  • Mathematica
    a[0] = 1; a[1] = 0; a[n_] := Round[n!/E] /; n >= 1 size = 8; Table[Binomial[n, k]a[n - k], {n, 0, size}, {k, 0, n}] // TableForm (* Harlan J. Brothers, Mar 19 2007 *)
    T[n_, k_] := Subfactorial[n-k]*Binomial[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)
    T[n_, k_] := If[n<1, Boole[n==0 && k==0], T[n, k] = T[n-1, k-1] + T[n-1, k]*(n-1-k) + T[n-1, k+1]*(k+1)]; (* Michael Somos, Sep 13 2024 *)
    T[0, 0]:=1; T[n_, 0]:=T[n, 0]=n  T[n-1, 0]+(-1)^n; T[n_, k_]:=T[n, k]=n/k T[n-1, k-1];
    Flatten@Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Oliver Seipel, Nov 26 2024 *)
  • PARI
    {T(n, k) = if(k<0 || k>n, 0, n!/k! * sum(i=0, n-k, (-1)^i/i!))}; /* Michael Somos, Apr 26 2000 */
    

Formula

T(n, k) = T(n-1, k)*n + binomial(n, k)*(-1)^(n-k) = T(n, k-1)/k + binomial(n, k)*(-1)^(n-k)/(n-k+1) = T(n-1, k-1)*n/k = T(n-k, 0)*binomial(n, k) = A000166(n-k)*binomial(n,k) [with T(0, 0) = 1]; so T(n, n) = 1, T(n, n-1) = 0, T(n, n-2) = n*(n-1)/2 for n >= 0.
Sum_{k=0..n} T(n, k) = Sum_{k=0..n} k * T(n, k) = n! for all n > 0, n, k integers. - Wouter Meeussen, May 29 2001
From Vladeta Jovovic, Aug 12 2002: (Start)
O.g.f. for k-th column: (1/k!)*Sum_{i>=k} i!*x^i/(1+x)^(i+1).
O.g.f. for k-th row: k!*Sum_{i=0..k} (-1)^i/i!*(1-x)^i. (End)
E.g.f.: exp((y-1)*x)/(1-x). - Vladeta Jovovic, Aug 18 2002
E.g.f. for number of permutations with exactly k fixed points is x^k/(k!*exp(x)*(1-x)). - Vladeta Jovovic, Aug 25 2002
Sum_{k=0..n} T(n, k)*x^k is the permanent of the n X n matrix with x's on the diagonal and 1's elsewhere; for x = 0, 1, 2, 3, 4, 5, 6 see A000166, A000142, A000522, A010842, A053486, A053487, A080954. - Philippe Deléham, Dec 12 2003; for x = 1+i see A009551 and A009102. - John M. Campbell, Oct 11 2011
T(n, k) = Sum_{j=0..n} A008290(n, j)*k^(n-j) is the permanent of the n X n matrix with 1's on the diagonal and k's elsewhere; for k = 0, 1, 2 see A000012, A000142, A000354. - Philippe Deléham, Dec 13 2003
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
T(n,k) = (n!/k!)*Sum_{j=0..n-k} ((-1)^j)/j!, 0 <= k <= n. From the Appell type of the triangle and the subfactorial formula.
T(n,0) = n*Sum_{j=0..n-1} (j/(j+1))*T(n-1,j), T(0,0)=1. From the z-sequence of this Sheffer triangle z(j)=j/(j+1) with e.g.f. (1-exp(x)*(1-x))/x. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
T(n,k) = (n/k)*T(n-1,k-1) for k >= 1. See above. From the a-sequence of this Sheffer triangle a(0)=1, a(n)=0, n >= 1 with e.g.f. 1. See the W. Lang link under A006232 for Sheffer a- and z-sequences. - Wolfdieter Lang, Jan 21 2008
From Henk P. J. van Wijk, Oct 29 2012: (Start)
T(n,k) = T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k=0 and
T(n,k) = T(n-1,k-1) + T(n-1,k)*(n-1-k) + T(n-1,k+1)*(k+1) for k>=1.
(End)
T(n,k) = A098825(n,n-k). - Reinhard Zumkeller, Dec 16 2013
Sum_{k=0..n} k^2 * T(n, k) = 2*n! if n > 1. - Michael Somos, Jun 06 2017
From Tom Copeland, Jul 26 2017: (Start)
The lowering and raising operators of this Appell sequence of polynomials P(n,x) are L = d/dx and R = x + d/dL log[exp(-L)/(1-L)] = x-1 + 1/(1-L) = x + L + L^2 - ... such that L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
P(n,x) = (1-L)^(-1) exp(-L) x^n = (1+L+L^2+...)(x-1)^n = n! Sum_{k=0..n} (x-1)^k / k!.
The formalism of A133314 applies to the pair of entries A008290 and A055137.
The polynomials of this pair P_n(x) and Q_n(x) are umbral compositional inverses; i.e., P_n(Q.(x)) = x^n = Q_n(P.(x)), where, e.g., (Q.(x))^n = Q_n(x).
For more on the infinitesimal generator, noted by Bala below, see A238385. (End)
Sum_{k=0..n} k^m * T(n,k) = A000110(m)*n! if n >= m. - Zhujun Zhang, May 24 2019
Sum_{k=0..n} (k+1) * T(n,k) = A098558(n). - Alois P. Heinz, Mar 11 2022
From Alois P. Heinz, May 20 2023: (Start)
Sum_{k=0..n} (-1)^k * T(n,k) = A000023(n).
Sum_{k=0..n} (-1)^k * k * T(n,k) = A335111(n). (End)
T(n,k) = A145224(n,k)+A145225(n,k), refined by even and odd perms. - R. J. Mathar, Jul 06 2023

Extensions

Comments and more terms from Michael Somos, Apr 26 2000 and Christian G. Bower, Apr 26 2000

A036039 Irregular triangle of multinomial coefficients of integer partitions read by rows (in Abramowitz and Stegun ordering) giving the coefficients of the cycle index polynomials for the symmetric groups S_n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 40, 90, 120, 15, 40, 45, 15, 1, 720, 840, 504, 420, 504, 630, 280, 210, 210, 420, 105, 70, 105, 21, 1, 5040, 5760, 3360, 2688, 1260, 3360, 4032, 3360, 1260, 1120, 1344, 2520, 1120, 1680, 105, 420, 1120, 420, 112, 210, 28, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence of row lengths is A000041(n), n >= 1 (partition numbers).
Number of permutations whose cycle structure is the given partition. Row sums are factorials (A000142). - Franklin T. Adams-Watters, Jan 12 2006
A relation between partition polynomials formed from these "refined" Stirling numbers of the first kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
These cycle index polynomials for the symmetric group S_n are also related to a raising operator / infinitesimal generator for fractional integro-derivatives, involving the digamma function and the Riemann zeta function values at positive integers, and to the characteristic polynomial for the adjacency matrix of complete n-graphs A055137 (cf. MathOverflow link). - Tom Copeland, Nov 03 2012
In the Lang link, replace all x(n) by t to obtain A132393. Furthermore replace x(1) by t and all other x(n) by 1 to obtain A008290. See A274760. - Tom Copeland, Nov 06 2012, Oct 29 2015 - corrected by Johannes W. Meijer, Jul 28 2016
The umbral compositional inverses of these polynomials are formed by negating the indeterminates x(n) for n>1, i.e., P(n,P(.,x(1),-x(2),-x(3),...),x(2),x(3),...) = x(1)^n (cf. A130561 for an example of umbral compositional inversion). The polynomials are an Appell sequence in x(1), i.e., dP(n,x(1))/dx(1) = n P(n-1, x(1)) and (P(.,x)+y)^n=P(n,x+y) umbrally, with P(0,x(1))=1. - Tom Copeland, Nov 14 2014
Regarded as the coefficients of the partition polynomials listed by Lang, a signed version of these polynomials IF(n,b1,b2,...,bn) (n! times polynomial on page 184 of Airault and Bouali) provides an inversion of the Faber polynomials F(n,b1,b2,...,bn) (page 52 of Bouali, A263916, and A115131). For example, F(3, IF(1,b1), IF(2,b1,b2)/2!, IF(3,b1,b2,b3)/3!) = b3 and IF(3, F(1,b1), F(2,b1,b2), F(3,b1,b2,b3))/3! = b3 with F(1,b1) = -b1. (Compare with A263634.) - Tom Copeland, Oct 28 2015; Sep 09 2016
The e.g.f. for the row partition polynomials is Sum_{n>=0} P_n(b_1,...,b_n) x^n/n! = exp[Sum_{n>=1} b_n x^n/n], or, exp[P.(b_1,...,b_n)x] = exp[-], expressed umbrally with <"power series"> denoting umbral evaluation (b.)^n = b_n within the power series. This e.g.f. is central to the paper by Maxim and Schuermannn on characteristic classes (cf. Friedrich and McKay also). - Tom Copeland, Nov 11 2015
The elementary Schur polynomials are given by S(n,x(1),x(2),...,x(n)) = P(n,x(1), 2*x(2),...,n*x(n)) / n!. See p. 12 of Carrell. - Tom Copeland, Feb 06 2016
These partition polynomials are also related to the Casimir invariants associated to quantum density states on p. 3 of Boya and Dixit and pp. 5 and 6 of Byrd and Khaneja. - Tom Copeland, Jul 24 2017
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133932. - Tom Copeland, Feb 09 2018
For relation to the Witt symmetric functions, as well as the basic power, elementary, and complete symmetric functions, see the Borger link p. 295. For relations to diverse zeta functions, determinants, and paths on graphs, see the MathOverflow question Cycling Through the Zeta Garden. - Tom Copeland, Mar 25 2018
Chmutov et al. identify the partition polynomials of this entry with the one-part Schur polynomials and assert that any linear combination with constant coefficients of these polynomials is a tau function for the KP hierarchy. - Tom Copeland, Apr 05 2018
With the indeterminates in the partition polynomials assigned as generalized harmonic numbers, i.e., as partial sums of the Dirichlet series for the Riemann zeta function, zeta(n), for integer n > 1, sums of simple normalizations of these polynomials give either unity or simple sums of consecutive zeta(n) (cf. Hoffman). Other identities involving these polynomials can be found in the Choi reference in Hoffman's paper. - Tom Copeland, Oct 05 2019
On p. 39 of Ma Luo's thesis is the e.g.f. of rational functions r_n obtained through the (umbral) formula 1/(1-r.T) = exp[log(1+P.T)], a differently signed e.g.f. of this entry, where (P.)^n = P_n are Eisenstein elliptic functions. P. 38 gives the example of 4! * r_4 as the signed 4th row partition polynomial of this entry. This series is equated through a simple proportionality factor to the Zagier Jacobi form on p. 25. Recurrence relations for the P_n are given on p. 24 involving the normalized k-weight Eisenstein series G_k introduced on p. 23 and related to the Bernoulli numbers. - Tom Copeland, Oct 16 2019
The Chern characteristic classes or forms of complex vector bundles and the characteristic polynomials of curvature forms for a smooth manifold can be expressed in terms of this entry's partition polynomials with the associated traces, or power sum polynomials, as the indeterminates. The Chern character is the e.g.f. of these traces and so its coefficients are given by the Faber polynomials with this entry's partition polynomials as the indeterminates. See the Mathoverflow question "A canonical reference for Chern characteristic classes". - Tom Copeland, Nov 04 2019
For an application to the physics of charged fermions in an external field, see Figueroa et al. - Tom Copeland, Dec 05 2019
Konopelchenko, in Proposition 5.2, p. 19, defines an operator P_k that is a differently signed operator version of the partition polynomials of this entry divided by a factorial. These operators give rise to bilinear Hirota equations for the KP hierarchy. These partition polynomials are also presented in Hopf algebras of symmetric functions by Cartier. - Tom Copeland, Dec 18 2019
For relationship of these partition polynomials to calculations of Pontryagin classes and the Riemann xi function, see A231846. - Tom Copeland, May 27 2020
Luest and Skliros summarize on p. 298 many of the properties of the cycle index polynomials given here; and Bianchi and Firrotta, a few on p. 6. - Tom Copeland, Oct 15 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			The partition array T(n, k) begins (see the W. Lang link for rows 1..10):
  n\k   1    2    3    4    5    6    7    8    9   10   11  12   13  14 15 ...
  1:    1
  2:    1    1
  3:    2    3    1
  4:    6    8    3    6    1
  5:   24   30   20   20   15   10    1
  6:  120  144   90   40   90  120   15   40   45   15    1
  7:  720  840  504  420  504  630  280  210  210  420  105  70  105  21  1
... reformatted by _Wolfdieter Lang_, May 25 2019
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2".

Crossrefs

Cf. other versions based on different partition orderings: A102189 (rows reversed), A181897, A319192.
Cf. A133932.
Cf. A231846.
Cf. A127671.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036039(n, m) := n!/ (mul((t)^q(t)*q(t)!, t=1..n)); od: od: seq(seq(A036039(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
    # 2nd program:
    A036039 := proc(n,k)
        local a,prts,e,ai ;
        a := n! ;
        # ASPrts is implemented in A119441
        prts := ASPrts(n)[k] ;
        ai := 1;
        for e from 1 to nops(prts) do
            if e>1 then
                if op(e,prts) = op(e-1,prts) then
                    ai := ai+1 ;
                else
                    ai := 1;
                end if;
            end if;
            a := a/(op(e,prts)*ai) ;
        end do:
        a ;
    end proc:
    seq(seq(A036039(n,k),k=1..combinat[numbpart](n)),n=1..15) ; # R. J. Mathar, Dec 18 2016
  • Mathematica
    aspartitions[n_]:=Reverse/@Sort[Sort/@IntegerPartitions[n]];(* Abramowitz & Stegun ordering *);
    ascycleclasses[n_Integer]:=n!/(Times@@ #)&/@((#!
    Range[n]^#)&/@Function[par,Count[par,# ]&/@Range[n]]/@aspartitions[n])
    (* The function "ascycleclasses" is then identical with A&S multinomial M2. *)
    Table[ascycleclasses[n], {n, 1, 8}] // Flatten
    (* Wouter Meeussen, Jun 26 2009, Jun 27 2009 *)
  • Sage
    def PartAS(n):
        P = []
        for k in (1..n):
            Q = [p.to_list() for p in Partitions(n, length=k)]
            for q in Q: q.reverse()
            P = P + sorted(Q)
        return P
    def A036039_row(n):
        fn, C = factorial(n), []
        for q in PartAS(n):
            q.reverse()
            p = Partition(q)
            fp = 1; pf = 1
            for a, c in p.to_exp_dict().items():
                fp *= factorial(c)
                pf *= factorial(a)**c
            co = fn//(fp*pf)
            C.append(co*prod([factorial(i-1) for i in p]))
        return C
    for n in (1..10):
        print(A036039_row(n)) # Peter Luschny, Dec 18 2016

Formula

T(n,k) = n!/Product_{j=1..n} j^a(n,k,j)*a(n,k,j)!, with the k-th partition of n >= 1 in Abromowitz-Stegun order written as Product_{j=1..n} j^a(n,k,j) with nonnegative integers a(n,k,j) satisfying Sum_{j=1..n} j*a(n,k,j) = n, and the number of parts is Sum_{j=1..n} a(n,k,j) =: m(n,k). - Wolfdieter Lang, May 25 2019
Raising and lowering operators are given for the partition polynomials formed from this sequence in the link in "Lagrange a la Lah Part I" on p. 23. - Tom Copeland, Sep 18 2011
From Szabo p. 34, with b_n = q^n / (1-q^n)^2, the partition polynomials give an expansion of the MacMahon function M(q) = Product_{n>=1} 1/(1-q^n)^n = Sum_{n>=0} PL(n) q^n, the generating function for PL(n) = n! P_n(b_1,...,b_n), the number of plane partitions with sum n. - Tom Copeland, Nov 11 2015
From Tom Copeland, Nov 18 2015: (Start)
The partition polynomials of A036040 are obtained by substituting x[n]/(n-1)! for x[n] in the partition polynomials of this entry.
CIP_n(t-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = P_n(b1,...,bn;t), where CIP_n are the partition polynomials of this entry; F(n,...), those of A263916; and P_n, those defined in my formula in A094587, e.g., P_2(b1,b2;t) = 2 b2 + 2 b1 t + t^2.
CIP_n(-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = n! bn. (End)
From the relation to the elementary Schur polynomials given in A130561 and above, the partition polynomials of this array satisfy (d/d(x_m)) P(n,x_1,...,x_n) = (1/m) * (n!/(n-m)!) * P(n-m,x_1,...,x_(n-m)) with P(k,...) = 0 for k<0. - Tom Copeland, Sep 07 2016
Regarded as Appell polynomials in the indeterminate x(1)=u, the partition polynomials of this entry P_n(u) obey d/du P_n(u) = n * P_{n-1}(u), so the abscissas for the zeros of P_n(u) are the same as those of the extrema of P{n+1}(u). In addition, the coefficient of u^{n-1} in P_{n}(u) is zero since these polynomials are related to the characteristic polynomials of matrices with null main diagonals, and, therefore, the trace is zero, further implying the abscissa for any zero is the negative of the sum of the abscissas of the remaining zeros. This assumes all zeros are distinct and real. - Tom Copeland, Nov 10 2019

Extensions

More terms from David W. Wilson
Title expanded by Tom Copeland, Oct 15 2020

A132382 Lower triangular array T(n,k) generator for group of arrays related to A001147 and A102625.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -3, -3, -3, 1, -15, -12, -6, -4, 1, -105, -75, -30, -10, -5, 1, -945, -630, -225, -60, -15, -6, 1, -10395, -6615, -2205, -525, -105, -21, -7, 1, -135135, -83160, -26460, -5880, -1050, -168, -28, -8, 1, -2027025, -1216215, -374220, -79380, -13230, -1890, -252, -36, -9, 1
Offset: 0

Views

Author

Tom Copeland, Nov 11 2007, Nov 12 2007, Nov 19 2007, Dec 04 2007, Dec 06 2007

Keywords

Comments

Let b(n) = LPT[ A001147 ] = -A001147(n-1) for n > 0 and 1 for n=0, where LPT represents the action of the list partition transform described in A133314.
Then T(n,k) = binomial(n,k) * b(n-k) .
Form the matrix of polynomials TB(n,k,t) = T(n,k) * t^(n-k) = binomial(n,k) * b(n-k) * t^(n-k) = binomial(n,k) * Pb(n-k,t),
beginning as
1;
-1, 1;
-1*t, -2, 1;
-3*t^2, -3*t, -3, 1;
-15*t^3, -12*t^2, -6*t, -4, 1;
-105*t^4, -75*t^3, -30*t^2, -10*t, -5, 1;
Let Pc(n,t) = LPT(Pb(.,t)).
Then [TB(t)]^(-1) = TC(t) = [ binomial(n,k) * Pc(n-k,t) ] = LPT(TB),
whose first column is
Pc(0,t) = 1
Pc(1,t) = 1
Pc(2,t) = 2 + t
Pc(3,t) = 6 + 6*t + 3*t^2
Pc(4,t) = 24 + 36*t + 30*t^2 + 15*t^3
Pc(5,t) = 120 + 240*t + 270*t^2 + 210*t^3 + 105*t^4.
The coefficients of these polynomials are given by the reverse of A102625 with the highest order coefficients given by A001147 with an additional leading 1.
Note this is not the complete matrix TC. The complete matrix is formed by multiplying along the diagonal of the lower triangular Pascal matrix by these polynomials, embedding trees of coefficients in the matrix.
exp[Pb(.,t)*x] = 1 + [(1-2t*x)^(1/2) - 1] / (t-0) = [1 + a finite diff. of [(1-2t*x)^(1/2)] with step t] = e.g.f. of the first column of TB.
exp[Pc(.,t)*x] = 1 / { 1 + [(1-2t*x)^(1/2) - 1] / t } = 1 / exp[Pb(.,t)*x) = e.g.f. of the first column of TC.
TB(t) and TC(t), being inverse to each other, are the generators of an Abelian group.
TB(0) and TC(0) are generators for a subgroup representing the iterated Laguerre operator described in A132013 and A132014.
Let sb(t,m) and sc(t,m) be the associated sequences under the LPT to TB(t)^m = B(t,m) and TC(t)^m = C(t,m).
Let Esb(t,m) and Esc(t,m) be e.g.f.'s for sb(t,m) and sc(t,m), rB(t,m) and rC(t,m) be the row sums of B(t,m) and C(t,m) and aB(t,m) and aC(t,m) be the alternating row sums.
Then B(t,m) is the inverse of C(t,m), Esb(t,m) is the reciprocal of Esc(t,m) and sb(t,m) and sc(t,m) form a reciprocal pair under the LPT. Similar relations hold among the row sums and the alternating sign row sums and associated quantities.
All the group members have the form B(t,m) * C(u,p) = TB(t)^m * TC(u)^p = [ binomial(n,k) * s(n-k) ]
with associated e.g.f. Es(x) = exp[m * Pb(.,t) * x] * exp[p * Pc(.,u) * x] for the first column of the matrix, with terms s(n), so group multiplication is isomorphic to matrix multiplication and to multiplication of the e.g.f.'s for the associated sequences (see examples).
These results can be extended to other groups of integer-valued arrays by replacing the 2 by any natural number in the expression for exp[Pb(.,t)*x].
More generally,
[ G.f. for M = Product_{i=0..j} B[s(i),m(i)] * C[t(i),n(i)] ]
= exp(u*x) * Product_{i=0..j} { exp[m(i) * Pb(.,s(i)) * x] * exp[n(i) * Pc(.,t(i)) * x] }
= exp(u*x) * Product_{i=0..j} { 1 + [ (1 - 2*s(i)*x)^(1/2) - 1 ] / s(i) }^m(i) / { 1 + [ (1 - 2*t(i)*x)^(1/2) - 1 ] / t(i) }^n(i)
= exp(u*x) * H(x)
[ E.g.f. for M ] = I_o[2*(u*x)^(1/2)] * H(x).
M is an integer-valued matrix for m(i) and n(i) positive integers and s(i) and t(i) integers. To invert M, change B to C in Product for M.
H(x) is the e.g.f. for the first column of M and diagonally multiplying the Pascal matrix by the terms of this column generates M. See examples.
The G.f. for M, i.e., the e.g.f. for the row polynomials of M, implies that the row polynomials form an Appell sequence (see Wikipedia and Mathworld). - Tom Copeland, Dec 03 2013

Examples

			Some group members and associated arrays are
(t,m) :: Array :: Asc. Matrix :: Asc. Sequence :: E.g.f. for sequence
..............................................................................
(0,1).::.B..::..A132013.::.(1,-1,0,0,0,0,...).....::.s(x).=.1-x
(0,1).::.C..::..A094587.::.(0!,1!,2!,3!,...)......::.1./.s(x)
(0,1).::.rB.::.~A055137.::.(1,0,-1,-2,-3,-4,...)..::.exp(x).*.s(x)
(0,1).::.rC.::....-.....::..A000522...............::.exp(x)./.s(x)
(0,1).::.aB.::....-.....::.(1,-2,3,-4,5,-6,...)...::.exp(-x).*.s(x)
(0,1).::.aC.::..A008290.::..A000166...............::.exp(-x)./.s(x)
..............................................................................
(0,2).::.B..::..A132014.::.(1,-2,2,0,0,0,0...)....::.s(x).=.(1-x)^2
(0,2).::.C..::..A132159.::.(1!,2!,3!,4!,...)......::..1./.s(x).
(0,2).::.rB.::...-......::.(1,-1,-1,1,5,11,19,29,)::.exp(x).*.s(x).
(0,2).::.rC.::...-......::..A001339...............::.exp(x)./.s(x).
(0,2).::.aB.::...-......::.(-1)^n.A002061(n+1)....::.exp(-x).*.s(x).
(0,2).::.aC.::...-......::..A000255...............::.exp(-x)./.s(x).
..............................................................................
(1,1).::.B..::..T.......::.(1,-A001147(n-1))......::.s(x).=.(1-2x)^(1/2)
(1,1).::.C..::.~A113278.::..A001147...............::.1./.s(x)...
(1,1).::.rB.::...-......::..A055142...............::.exp(x).*.s(x).
(1,1).::.rC.::...-......::..A084262...............::.exp(x)./.s(x).
(1,1).::.aB.::...-......::.(1,-2,2,-4,-4,-56,...).::.exp(-x).*.s(x).
(1,1).::.aC.::...-......::..A053871...............::.exp(-x)./.s(x).
..............................................................................
(2,1).::.B..::...-......::.(1,-A001813)...........::.s=[1+(1-4x)^(1/2)]/2....
(2,1).::.C..::...-......::..A001761...............::.1./.s(x)..
(2,1).::.rB.::...-......::.(1,0,-3,-20,-183,...)..::.exp(x).*.s(x)..
(2,1).::.rC.::...-......::.(1,2,7,46,485,...).....::.exp(x)./.s(x).
(2,1).::.aB.::...-......::.(1,-2,1,-10,-79,...)...::.exp(-x).*.s(x).
(2,1).::.aC.::...-......::.(1,0,3,20,237,...).....::.exp(-x)./.s(x)
..............................................................................
(1,2).::.B..::.~A134082.::.(1,-2,0,0,0,0,...).....::.s(x).=.1.-.2x
(1,2).::.C..::....-.....::..A000165...............::.1./.s(x)..
(1,2).::.rB.::....-.....::.(1,-1,-3,-5,-7,-9,...).::.exp(x).*.s(x).
(1,2).::.rC.::....-.....::..A010844...............::.exp(x)./.s(x)..
(1,2).::.aB.::....-.....::.(1,-3,5,-7,9,-11,...)..::.exp(-x).*.s(x).
(1,2).::.aC.::....-.....::..A000354...............::.exp(-x)./.s(x).
..............................................................................
(The tilde indicates the match is not exact--specifically, there are differences in signs from the true matrices.)
Note the row sums correspond to binomial transforms of s(x) and the alternating row sums, to inverse binomial transforms, or, finite differences.
Some additional examples:
C(1,2)*B(0,1) = B(1,-2)*C(0,-1) = [ binomial(n,k)*A002866(n-k) ] with asc. e.g.f. (1-x) / (1-2x).
B(1,2)*C(0,1) = C(1,-2)*B(0,-1) = 2I - A094587 with asc. e.g.f. (1-2x) / (1-x).
		

Formula

[G.f. for TB(n,k,t)] = GTB(u,x,t) = exp(u*x) * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pb(.,t))*x] where TB(n,k,t) = (D_x)^n (D_u)^k /k! GTB(u,x,t) eval. at u=x=0.
[G.f. for TC(n,k,t)] = GTC(u,x,t) = exp(u*x) / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } = exp[(u+Pc(.,t))*x] where TC(n,k,t) = (D_x)^n (D_u)^k /k! GTC(u,x,t) eval. at u=x=0.
[E.g.f. for TB(n,k,t)] = I_o[2*(u*x)^(1/2)] * { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t } and
[E.g.f. for TC(n,k,t)] = I_o[2*(u*x)^(1/2)] / { 1 + [ (1 - 2t*x)^(1/2) - 1 ] / t }
where I_o is the zeroth modified Bessel function of the first kind, i.e.,
I_o[2*(u*x)^(1/2)] = Sum_{j>=0} (u^j/j!) * (x^j/j!).
So [e.g.f. for TB(n,k)] = I_o[2*(u*x)^(1/2)] * (1 - 2x)^(1/2).

Extensions

More terms from Tom Copeland, Dec 05 2007

A238385 Shifted lower triangular matrix A238363 with a main diagonal of ones.

Original entry on oeis.org

1, 1, 1, -1, 2, 1, 2, -3, 3, 1, -6, 8, -6, 4, 1, 24, -30, 20, -10, 5, 1, -120, 144, -90, 40, -15, 6, 1, 720, -840, 504, -210, 70, -21, 7, 1, -5040, 5760, -3360, 1344, -420, 112, -28, 8, 1, 40320, -45360, 25920, -10080, 3024, -756, 168, -36, 9, 1, -362880, 403200, -226800, 86400, -25200, 6048, -1260, 240, -45, 10, 1
Offset: 0

Views

Author

Tom Copeland, Feb 25 2014

Keywords

Comments

Shift A238363 and add a main diagonal of ones to obtain this array. The row polynomials form a special Sheffer sequence of polynomials, an Appell sequence.

Examples

			The triangle a(n,k) begins:
n\k       0       1        2      3       4     5      6    7   8   9 10 ...
0:        1
1:        1       1
2:       -1       2        1
3:        2      -3        3      1
4:       -6       8       -6      4       1
5:       24     -30       20    -10       5     1
6:     -120     144      -90     40     -15     6      1
7:      720    -840      504   -210      70   -21      7    1
8:    -5040    5760    -3360   1344    -420   112    -28    8   1
9:    40320  -45360    25920 -10080    3024  -756    168  -36   9   1
10: -362880  403200  -226800  86400  -25200  6048  -1260  240 -45  10  1
... formatted by _Wolfdieter Lang_, Mar 09 2014
----------------------------------------------------------------------------
		

Crossrefs

Formula

a(n,k) = (-1)^(n+k-1)*n!/((n-k)*k!) for k
Along the n-th diagonal (n>0) Diag(n,k) = a(n+k,k) = (-1)^(n-1)(n-1)! * A007318(n+k,k).
E.g.f.: (log(1+t)+1)*exp(x*t).
E.g.f. for inverse: exp(x*t)/(log(1+t)+1).
The lowering/annihilation and raising/creation operators for the row polynomials are L=D=d/dx and R=x+1/[(1+D)(1+log(1+D))], i.e., L p(n,x)= n*p(n-1,x) and R p(n,x)= p(n+1,x).
E.g.f. of row sums: (log(1+t)+1)*exp(t). Cf. |row sums-1|=|A002741|.
E.g.f. of unsigned row sums: (-log(1-t)+1)*exp(t). Cf. A002104 + 1.
Let dP = A132440, the infinitesimal generator for the Pascal matrix, I, the identity matrix, and T, this entry's lower triangular matrix, then exp(T-I)=I+dP, i.e., T=I+log(I+dP). Also, ((T-I)n)^n=0, where (T-I)_n denotes the n X n submatrix, i.e., (T-I)_n is nilpotent of order n. - _Tom Copeland, Mar 02 2014
Dividing each subdiagonal by its first element (-1)^(n-1)*(n-1)! yields Pascal's triangle A007318. This is equivalent to multiplying the e.g.f. by exp(t)/(log(1+t)+1). - Tom Copeland, Apr 16 2014
From Tom Copeland, Apr 25 2014: (Start)
A) T = [St1]*[dP]*[St2] + I = [padded A008275]*A132440*A048993 + I
B) = [St1]*[dP]*[St1]^(-1) + I
C) = [St2]^(-1)*[dP]*[St2] + I
D) = [St2]^(-1)*[dP]*[St1]^(-1) + I,
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 and I=identity matrix. Cf. A074909. (End)
From Tom Copeland, Jul 26 2017: (Start)
p_n(x) = (1 + log(1+D)) x^n = (1 + D - D^2/2 + D^3/3- ...) x^n = x^n + n! * Sum_(k=1,..,n) (-1)^(k+1) (1/k) x^(n-k)/(n-k)!.
Unsigned T with the first two diagonals nulled gives an exponential infinitesimal generator M (infinigen) for the rencontres numbers A008290, and negated M gives the infinigen for A055137; i.e., with M = |T| - I - dP = -log(I-dP)-dP, then e^M = e^(-dP) / (I-dP) = lower triangular A008290, and e^(-M) = e^dP (I-dP) = A007318 * (I-dP) = lower triangular A055137. The matrix formulation is consistent with the operator relations e^(-D) / (1-D) x^n = n-th row polynomial of A008290 and e^D (1-D) x^n = n-th row polynomial of A055137. (End)

A145225 Triangle read by rows: T(n,k) is the number of odd permutations (of an n-set) with exactly k fixed points.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 6, 0, 6, 0, 0, 20, 30, 0, 10, 0, 0, 135, 120, 90, 0, 15, 0, 0, 924, 945, 420, 210, 0, 21, 0, 0, 7420, 7392, 3780, 1120, 420, 0, 28, 0, 0, 66744, 66780, 33264, 11340, 2520, 756, 0, 36, 0, 0
Offset: 0

Author

Abdullahi Umar, Oct 10 2008

Keywords

Examples

			Triangle starts:
   0;
   0,  0;
   1,  0, 0;
   0,  3, 0,  0;
   6,  0, 6,  0, 0;
  20, 30, 0, 10, 0, 0;
  ...
		

Crossrefs

Row sums are A001710 for n > 1.
Columns k=0..2 are A000387, A145222, A145223.

Programs

  • Maple
    A145225 := proc(n,k)
        binomial(n,k)*A000387(n-k) ; # re-use code of A000387
    end proc:
    seq(seq(A145225(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 06 2023
  • Mathematica
    A145225[n_, k_] := Binomial[n, k]*Binomial[n - k, 2]*Subfactorial[n - k - 2];
    Table[A145225[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 31 2025 *)

Formula

T(n,k) = C(n,k) * A000387(n-k).
E.g.f.: x^(k+2) * exp(-x) / (2*k!*(1-x)).
T(n,k) + A145224(n,k) = A008290(n,k). - R. J. Mathar, Jul 06 2023
T(n,k) = (A008290(n,k) - A055137(n,k)) / 2. - Julian Hatfield Iacoponi, Aug 08 2024

A103247 Triangle read by rows: T(n,k) is the coefficient of x^k (0<=k<=n) in the monic characteristic polynomial of the n X n matrix with 3's on the diagonal and 1's elsewhere (n>=1). Row 0 consists of the single term 1.

Original entry on oeis.org

1, -3, 1, 8, -6, 1, -20, 24, -9, 1, 48, -80, 48, -12, 1, -112, 240, -200, 80, -15, 1, 256, -672, 720, -400, 120, -18, 1, -576, 1792, -2352, 1680, -700, 168, -21, 1, 1280, -4608, 7168, -6272, 3360, -1120, 224, -24, 1, -2816, 11520, -20736, 21504, -14112, 6048, -1680, 288, -27, 1, 6144, -28160, 57600, -69120, 53760, -28224, 10080, -2400, 360, -30, 1
Offset: 0

Author

Emeric Deutsch, Mar 19 2005

Keywords

Comments

Row sums of the unsigned triangle yield A006234. The unsigned triangle is the mirror image of A103407.

Examples

			The monic characteristic polynomial of the matrix [3 1 1 / 1 3 1 / 1 1 3] is x^3 - 9x^2 + 24x - 20; so T(3,0)=-20, T(3,1)=24, T(3,2)=-9, T(3,3)=1.
Triangle begins:
  1;
  -3,1;
  8,-6,1;
  -20,24,-9,1;
  48,-80,48,-12,1;
  ...
		

Crossrefs

Programs

  • Maple
    with(linalg): a:=proc(i,j) if i=j then 3 else 1 fi end: 1;for n from 1 to 10 do seq(coeff(expand(x*charpoly(matrix(n,n,a),x)),x^k),k=1..n+1) od; # yields the sequence in triangular form
  • Mathematica
    M[n_] := Table[If[i == j, 3, 1], {i, 1, n}, {j, 1, n}];
    P[n_] := P[n] = CharacteristicPolynomial[M[n], x];
    row[n_] := row[n] = If[n == 0, {1}, CoefficientList[P[n]/Coefficient[P[n], x, n], x]];
    T[n_, k_] := row[n][[k]];
    Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 06 2024 *)

Formula

Appears to be the matrix product (I-S)*P^(-2), where I is the identity, P is Pascal's triangle A007318 and S is A132440, the infinitesimal generator of P. Cf. A055137 (= (I-S)*P) and A103283 (= (I-S)*P^(-1)). - Peter Bala, Nov 28 2011

A127717 Triangle read by rows. T(n, k) = k * binomial(n + 1, k + 1), for 1 <= k <= n.

Original entry on oeis.org

1, 3, 2, 6, 8, 3, 10, 20, 15, 4, 15, 40, 45, 24, 5, 21, 70, 105, 84, 35, 6, 28, 112, 210, 224, 140, 48, 7, 36, 168, 378, 504, 420, 216, 63, 8, 45, 240, 630, 1008, 1050, 720, 315, 80, 9, 55, 330, 990, 1848, 2310, 1980, 1155, 440, 99, 10
Offset: 1

Author

Gary W. Adamson, Jan 25 2007

Keywords

Comments

T(n,k) is the sum of the greatest element in each size k subset of {1,2,...,n}. - Geoffrey Critzer, Oct 17 2009
Reversed unsigned rows of A055137 with the diagonal and first subdiagonal removed. - Tom Copeland, Nov 04 2012
Consider the transformation 1 + 2x + 3x^2 + 4x^3 + ... + (n+1)*x^n = A_0*(x-1)^0 + A_1*(x-1)^1 + A_2*(x-1)^2 + ... + A_n*(x-1)^n. This sequence gives A_0, ..., A_n as the entries in the n-th row of this triangle, starting at n = 0. - Derek Orr, Oct 30 2014

Examples

			First few rows of the triangle:
    [1    2    3     4     5    6    7     8    9]
[1]  1;
[2]  3,   2;
[3]  6,   8,   3;
[4] 10,  20,  15,    4;
[5] 15,  40,  45,   24,    5;
[6] 21,  70, 105,   84,   35,    6;
[7] 28, 112, 210,  224,  140,   48,    7;
[8] 36, 168, 378,  504,  420,  216,   63,   8;
[9] 45, 240, 630, 1008, 1050,  720,  315,  80,  9;
  ...
T(4, 3) = 15 because the size 3 subsets of {1, 2, 3, 4} are {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}. Adding the largest element from each subset we get 3 + 4 + 4 + 4 = 15. - _Geoffrey Critzer_, Oct 17 2009
		

Crossrefs

Programs

  • Maple
    # Assuming (1,1)-based triangle:
    T := (n, k) -> k*binomial(n+1, k+1):
    seq(seq(T(n, k), k = 1..n), n = 1..9);
    # Assuming (0,0)-based triangle:
    gf := 1/((1 - x)*(1 - x - x*y)^2): ser := series(gf, x, 11):
    seq(seq(coeff(coeff(ser, x, n), y, k), k=0..n), n=0..9); # Peter Luschny, Jan 07 2023
  • Mathematica
    Table[Table[Sum[Binomial[i - 1, k - 1]*i, {i, k, n}], {k, 1, n}], {n, 1, 10}] // Grid (* Geoffrey Critzer, Oct 17 2009 *)
  • PARI
    T(n,k) = k*sum(i=0,n-k,binomial(i+k,k))
    for(n=1,15,for(k=1,n,print1(T(n,k),", "))) \\ Derek Orr, Oct 30 2014

Formula

A002260 * A007318 (Pascal's Triangle), where A002260 = the matrix [1; 1,2; 1,2,3,...].
T(n,k) = Sum_{i=k..n} binomial(i-1, k-1)*i. - Geoffrey Critzer, Oct 17 2009
Row sums = A000337: (1, 5, 17, 49, 129, ...) A007318 * A002260 = A127718.
From Geoffrey Critzer, Oct 18 2009: (Start)
T(n,k) = k*binomial(n+1, k+1).
Recurrence for column k: a(n) = a(n-1) + n*binomial(n-1, k-1) = a(n-1) + k*binomial(n, k).
O.g.f. for column k: k*x^k/(1-x)^(k+2). (End)
T(n,k) = Sum_{i=1..k} i*binomial(k,i)*binomial(n+2-k, k+2-i). - Mircea Merca, Apr 11 2012
G.f.: 1/((1 - x)*(1 - x - x*y)^2), assuming the triangle (0,0)-based. - Vladimir Kruchinin, Jan 07 2023

Extensions

a(8) = 20, corrected by Geoffrey Critzer, Oct 17 2009
More terms from Derek Orr, Oct 30 2014
Offset set to 1 and new name using a formula of Geoffrey Critzer by Peter Luschny, Jan 07 2023

A145224 Triangle read by rows: T(n,k) is the number of even permutations (of an n-set) with exactly k fixed points.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 8, 0, 0, 1, 24, 15, 20, 0, 0, 1, 130, 144, 45, 40, 0, 0, 1, 930, 910, 504, 105, 70, 0, 0, 1, 7413, 7440, 3640, 1344, 210, 112, 0, 0, 1, 66752, 66717, 33480, 10920, 3024, 378, 168, 0, 0, 1
Offset: 0

Author

Abdullahi Umar, Oct 09 2008

Keywords

Examples

			Triangle starts:
   1;
   0,  1;
   0,  0,  1;
   2,  0,  0, 1;
   3,  8,  0, 0, 1;
  24, 15, 20, 0, 0, 1;
  ...
		

Crossrefs

Row sums give A001710.
Columns k=0..2 are A003221, A145219, A145220.

Formula

T(n,k) = C(n,k)*A003221(n-k).
E.g.f.: (x^k(1-x^2/2) e^(-x))/k!(1-x).
T(n,k) + A145225(n,k) = A008290(n,k). - R. J. Mathar, Jul 06 2023
T(n,k) = (A008290(n,k) + A055137(n,k))/2. - Julian Hatfield Iacoponi, Aug 08 2024

A140324 A new way to compute polynomial triangles from matrices of a Folium Implicit type: M={{0, -w[1], -w[2]}, {w[1], 0, -w[1]}, {w[2], w[1], 0}} that gives even only monomials as w[1]=x, others as one.

Original entry on oeis.org

1, 0, 0, 1, 1, -2, -1, 2, 1, 1, -8, 22, -22, 1, 6, 1, 0, 0, 9, -54, 117, -102, 18, 12, 1, 1, -6, 3, 48, -101, -32, 291, -294, 70, 20, 1
Offset: 1

Author

Roger L. Bagula and Gary W. Adamson, May 26 2008

Keywords

Comments

Matrix of the type
{{x,y,a},
{y,a,x},
{a,x,y}}
gives the folium of Descartes implicit polynomial:
x^3+y^3+a^3-3a*x*y
These types of polynomials gives various types of implicit curves in higher dimensions.
Unsigned version of this sequence algorithm gives A055137.
Some of these polynomials are similar to the Hodge number / diamond type Calabi-Yau implicit or Algebraic varieties. Here I have invented a way to make monomials from the higher polynomials. In the past I have used this matrix method to produce 3d Implicit surfaces.

Examples

			{1},
{},
{0, 0, 1},
{},
{1, -2, -1, 2, 1},
{},
{1, -8, 22, -22, 1, 6, 1},
{},
{0, 0, 9, -54, 117, -102, 18, 12, 1},
{},
{1, -6, 3, 48, -101, -32, 291, -294, 70, 20, 1}
		

Programs

  • Mathematica
    Clear[M, a, d, x, w] M[d_] := Table[Sign[n - m]*w[Abs[n - m]], {n, 1, d}, {m, 1, d}]; a = Table[M[d], {d, 1, 10}]; Table[If[n == 1, w[n] = x, w[n] = 1], {n, 0, 10}]; Table[Det[a[[d]]], {d, 1, 10}]; a0 = Join[{{1}}, Table[CoefficientList[Det[a[[d]]], x], {d, 1, 10}]]; Flatten[a0] Table[Apply[Plus, CoefficientList[Det[a[[d]]], x]], {d, 1, 10}]

Formula

Compute matrices as: T(n,m)=Sign[n - m]*w[Abs[n - m]]; Change to monomial as:If[n==1,w[n]=x,w[n]=1]; Take determinant of matrices M(d); out_n,m=Coefficients(Det(M(d)))).
Showing 1-10 of 10 results.