A107056
Matrix inverse of A103247, so that T(n,k) = C(n,k)*A010842(n-k), read by rows.
Original entry on oeis.org
1, 3, 1, 10, 6, 1, 38, 30, 9, 1, 168, 152, 60, 12, 1, 872, 840, 380, 100, 15, 1, 5296, 5232, 2520, 760, 150, 18, 1, 37200, 37072, 18312, 5880, 1330, 210, 21, 1, 297856, 297600, 148288, 48832, 11760, 2128, 280, 24, 1, 2681216, 2680704, 1339200, 444864, 109872
Offset: 0
Triangle T begins:
1;
3,1;
10,6,1;
38,30,9,1;
168,152,60,12,1;
872,840,380,100,15,1;
5296,5232,2520,760,150,18,1; ...
where T(n,k) = A010842(n-k)*binomial(n,k).
Matrix logarithm L begins:
0;
-3,0;
-1,-6,0;
-2,-3,-9,0;
-6,-8,-6,-12,0;
-24,-30,-20,-10,-15,0; ...
where L(n,k) = L(n,0)*binomial(n,k),
with L(n,0)=-(n-1)! for n>1, L(1,0)=-3, L(0,0)=0.
A103236
Triangular matrix T, read by rows, that satisfies: T^2 + 2*T = SHIFTUP(T), also T^(n+1) + 2*T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
Original entry on oeis.org
1, 3, 2, 15, 8, 3, 114, 56, 15, 4, 1191, 568, 135, 24, 5, 15993, 7536, 1710, 264, 35, 6, 263976, 123704, 27495, 4008, 455, 48, 7, 5189778, 2425320, 533565, 75696, 8050, 720, 63, 8, 118729335, 55403008, 12121920, 1695528, 174615, 14544, 1071, 80, 9
Offset: 0
Rows of T begin:
[1],
[3,2],
[15,8,3],
[114,56,15,4],
[1191,568,135,24,5],
[15993,7536,1710,264,35,6],
[263976,123704,27495,4008,455,48,7],
[5189778,2425320,533565,75696,8050,720,63,8],...
Rows of T^2 begin:
[1],
[9,4],
[84,40,9],
[963,456,105,16],
[13611,6400,1440,216,25],...
Rows of T^2+2*T equals SHIFTUP(T):
[3],
[15,8],
[114,56,15],
[1191,568,135,24],
[15993,7536,1710,264,35],...
G.f. for column 0: 1 = (1-3x) + 3*x/(1-2x)*(1-3x)(1-4x) + 15*x^2/(1-2x)^2*(1-3x)(1-4x)(1-5x) + 114*x^3/(1-2x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ... + T(n,0)*x^n/(1-2*x)^n*(1-3x)(1-4x)*..*(1-(n+3)x) + ...
G.f. for column 1: 2 = 2*(1-4x) + 8*x/(1-2x)*(1-4x)(1-5x) + 56*x^2/(1-2x)^2*(1-4x)(1-5x)(1-6x) + 568*x^3/(1-2x)^3*(1-4x)(1-5x)(1-6x)(1-7x) + ... + T(n,1)*x^(n-1)/(1-2*x)^(n-1)*(1-4x)(1-5x)*..*(1-(n+3)x) + ...
A103242
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 3, 1, 39, 8, 1, 1206, 176, 15, 1, 69189, 7784, 495, 24, 1, 6416568, 585408, 29430, 1104, 35, 1, 881032059, 67481928, 2791125, 84600, 2135, 48, 1, 168514815360, 11111547520, 389244600, 9841728, 204470, 3744, 63, 1, 42934911510249
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[3/1!, 1/0!],
[39/2!, 8/1!, 1/0!],
[1206/3!, 176/2!, 15/1!, 1/0!],
[69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
[6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0!],
[ -3/1!, 1/0!],
[9/2!, -8/1!, 1/0!],
[ -27/3!, 64/2!, -15/1!, 1/0!],
[81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
[ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n
A103243
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^3)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 7, 1, 315, 26, 1, 45682, 2600, 63, 1, 15646589, 675194, 11655, 124, 1, 10567689552, 366349152, 4861458, 37944, 215, 1, 12503979423607, 361884843866, 3882676581, 23641468, 100835, 342, 1, 23841011541867520, 591934698991168, 5318920238688
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0! ],
[7/1!, 1/0! ],
[315/2!, 26/1!, 1/0! ],
[45682/3!, 2600/2!, 63/1!, 1/0! ],
[15646589/4!, 675194/3!, 11655/2!, 124/1!, 1/0! ],
[10567689552/5!, 366349152/4!, 4861458/3!, 37944/2!, 215/1!, 1/0! ], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0! ],
[ -7/1!, 1/0! ],
[49/2!, -26/1!, 1/0! ],
[ -343/3!, 676/2!, -63/1!, 1/0! ],
[2401/4!, -17576/3!, 3969/2!, -124/1!, 1/0! ],
[ -16807/5!, 456976/4!, -250047/3!, 15376/2!, -215/1!, 1/0! ], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^3)^(r-c)/(r-c)!))); return(if(n
A103407
Triangle of absolute values of the coefficients (in descending powers) of the characteristic polynomials of n X n matrices with 3's on the main diagonal and 1's elsewhere.
Original entry on oeis.org
1, 1, 3, 1, 6, 8, 1, 9, 24, 20, 1, 12, 48, 80, 48, 1, 15, 80, 200, 240, 112, 1, 18, 120, 400, 720, 672, 256, 1, 21, 168, 700, 1680, 2352, 1792, 576, 1, 24, 224, 1120, 3360, 6272, 7168, 4608, 1280, 1, 27, 288, 1680, 6048, 14112, 21504, 20736, 11520, 2816, 1, 30
Offset: 0
3rd row (1, 9, 24, 20) with alternating signs = characteristic polynomial 3 X 3 matrix [3 1 1 / 1 3 1 / 1 1 3], x^3 - 9x^2 + 24x - 20.
Row sums are
A006234: 1, 4, 15, 54, 189... Rightmost terms in each row =
A001792: 1, 3, 8, 20, 48, 112, 256...(row sums of
A103406, the analogous triangle with all 2's in the generating matrix.)
Showing 1-5 of 5 results.
Comments