A082163
Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 3, 15, 114, 1191, 15993, 263976, 5189778, 118729335, 3104549229, 91472523339, 3002047651764, 108699541743348, 4307549574285900, 185545521930558012, 8636223446937857130, 432133295481763698951, 23140414627731672497973, 1320835234697505382760757, 80076275471464881277266666, 5139849930933791535446756127
Offset: 1
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262). [It includes the original methodology that he used in his 2003 and 2006 papers.]
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
a[n_] := a[n] = If[n<1, 0, If[n == 1, 1, SeriesCoefficient[1-Sum[a[k+1]*x^k/(1-2*x)^k*Product[1-(j+3)*x, {j, 0, k}], {k, 0, n-2}], {x, 0,
n-1}]]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 15 2014, after PARI *)
-
{a(n)=if(n<1,0,if(n==1,1,polcoeff( 1-sum(k=0,n-2,a(k+1)*x^k/(1-2*x)^k*prod(j=0,k,1-(j+3)*x+x*O(x^n))),n-1)))} \\ Paul D. Hanna, Jan 29 2005
/* Second PARI program using Valery A. Liskovets's recurrence: */
lista(nn)={my(T=matrix(nn+1, nn+1)); my(d=vector(nn)); my(a=vector(nn)); for(n=1, nn+1, for(k=1, nn, T[n, k] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); for(n=1, nn, d[n] = T[n+1,1] - sum(j=1, n-1, binomial(n-1, j-1)*T[n-j+1, j+1]*d[j])); for(n=1, nn, a[n] = if(n==1, 1, d[n-1]/(n-2)!)); a;} \\ Petros Hadjicostas, Mar 07 2021
A103237
Triangular matrix T, read by rows, that satisfies: T^3 + 3T^2 + 3T = SHIFTUP(T), also T^(n+2) + 3T^(n+1) + 3T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
Original entry on oeis.org
1, 7, 2, 133, 26, 3, 5362, 962, 63, 4, 380093, 66794, 3843, 124, 5, 42258384, 7380100, 409248, 11284, 215, 6, 6830081860, 1190206134, 65160081, 1709836, 27305, 342, 7, 1520132414241, 264665899160, 14416260516, 371199704, 5585270, 57798, 511, 8
Offset: 0
Rows of T begin:
[1],
[7,2],
[133,26,3],
[5362,962,63,4],
[380093,66794,3843,124,5],
[42258384,7380100,409248,11284,215,6],
[6830081860,1190206134,65160081,1709836,27305,342,7],...
Rows of T^2 begin:
[1],
[21,4],
[714,130,9],
[41923,7410,441,16],...
Rows of T^3 begin:
[1],
[49,8],
[2821,494,27],
[238238,41678,2331,64],...
Rows of T^3 + 3*T^2 + 3*T equals SHIFTUP(T):
[7],
[133,26],
[5362,962,63],
[380093,66794,3843,124],...
-
{T(n,k)=local(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^3+3*c^2+3*c)^(r-c)/(r-c)!)); return(if(n
A103238
Triangular matrix T, read by rows, that satisfies: T^2 + T = SHIFTUP(T), also T^(n+1) + T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
Original entry on oeis.org
1, 2, 2, 8, 6, 3, 52, 36, 12, 4, 480, 324, 96, 20, 5, 5816, 3888, 1104, 200, 30, 6, 87936, 58536, 16320, 2800, 360, 42, 7, 1601728, 1064016, 294048, 49200, 5940, 588, 56, 8, 34251520, 22728384, 6252288, 1032800, 120960, 11172, 896, 72, 9, 843099616
Offset: 0
Rows of T begin:
[1],
[2,2],
[8,6,3],
[52,36,12,4],
[480,324,96,20,5],
[5816,3888,1104,200,30,6],
[87936,58536,16320,2800,360,42,7],
[1601728,1064016,294048,49200,5940,588,56,8],...
Rows of T^2 begin:
[1],
[6,4],
[44,30,9],
[428,288,84,16],
[5336,3564,1008,180,25],...
Then T^2 + T = SHIFTUP(T):
[2],
[8,6],
[52,36,12],
[480,324,96,20],
[5816,3888,1104,200,30],...
G.f. for column 0: 1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) + 52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ... + T(n,0)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
G.f. for column 1: 2 = 2*(1-3x) + 6*x/(1-x)*(1-3x)(1-4x) + 36*x^2/(1-x)^2*(1-3x)(1-4x)(1-5x) + 324*x^3/(1-x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ... + T(n,1)*x^(n-1)/(1-x)^(n-1)*(1-3x)(1-4x)*..*(1-(n+2)x) + ...
-
/* Using Matrix Diagonalization Formula: */ T(n,k)=my(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^2+c)^(r-c)/(r-c)!)); return(if(n
-
/* Using Generating Function for Columns: */ T(n,k)=if(n
A103242
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 3, 1, 39, 8, 1, 1206, 176, 15, 1, 69189, 7784, 495, 24, 1, 6416568, 585408, 29430, 1104, 35, 1, 881032059, 67481928, 2791125, 84600, 2135, 48, 1, 168514815360, 11111547520, 389244600, 9841728, 204470, 3744, 63, 1, 42934911510249
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[3/1!, 1/0!],
[39/2!, 8/1!, 1/0!],
[1206/3!, 176/2!, 15/1!, 1/0!],
[69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
[6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0!],
[ -3/1!, 1/0!],
[9/2!, -8/1!, 1/0!],
[ -27/3!, 64/2!, -15/1!, 1/0!],
[81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
[ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n
Showing 1-4 of 4 results.
Comments