A082171
A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).
Original entry on oeis.org
1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
1, 1, 1, 1, 1, ...;
3, 8, 15, 24, 35, ...;
39, 176, 495, 1104, 2135, ...;
1206, 7784, 29430, 84600, 204470, ...;
69189, 585408, 2791125, 9841728, 28569765, ...;
6416568, 67481928, 389244600, 1627740504, ...;
881032059, 11111547520, 75325337235, ...;
...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
1;
1, 3,
1, 8, 39;
1, 15, 176, 1206;
1, 24, 495, 7784, 69189;
1, 35, 1104, 29430, 585408, 6416568;
1, 48, 2135, 84600, 2791125, 67481928, 881032059;
...
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082171:= func< n,k | A(k,n-k+1) >;
[A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
def A082171(n,k): return A(k,n-k+1)
flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A103236
Triangular matrix T, read by rows, that satisfies: T^2 + 2*T = SHIFTUP(T), also T^(n+1) + 2*T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.
Original entry on oeis.org
1, 3, 2, 15, 8, 3, 114, 56, 15, 4, 1191, 568, 135, 24, 5, 15993, 7536, 1710, 264, 35, 6, 263976, 123704, 27495, 4008, 455, 48, 7, 5189778, 2425320, 533565, 75696, 8050, 720, 63, 8, 118729335, 55403008, 12121920, 1695528, 174615, 14544, 1071, 80, 9
Offset: 0
Rows of T begin:
[1],
[3,2],
[15,8,3],
[114,56,15,4],
[1191,568,135,24,5],
[15993,7536,1710,264,35,6],
[263976,123704,27495,4008,455,48,7],
[5189778,2425320,533565,75696,8050,720,63,8],...
Rows of T^2 begin:
[1],
[9,4],
[84,40,9],
[963,456,105,16],
[13611,6400,1440,216,25],...
Rows of T^2+2*T equals SHIFTUP(T):
[3],
[15,8],
[114,56,15],
[1191,568,135,24],
[15993,7536,1710,264,35],...
G.f. for column 0: 1 = (1-3x) + 3*x/(1-2x)*(1-3x)(1-4x) + 15*x^2/(1-2x)^2*(1-3x)(1-4x)(1-5x) + 114*x^3/(1-2x)^3*(1-3x)(1-4x)(1-5x)(1-6x) + ... + T(n,0)*x^n/(1-2*x)^n*(1-3x)(1-4x)*..*(1-(n+3)x) + ...
G.f. for column 1: 2 = 2*(1-4x) + 8*x/(1-2x)*(1-4x)(1-5x) + 56*x^2/(1-2x)^2*(1-4x)(1-5x)(1-6x) + 568*x^3/(1-2x)^3*(1-4x)(1-5x)(1-6x)(1-7x) + ... + T(n,1)*x^(n-1)/(1-2*x)^(n-1)*(1-4x)(1-5x)*..*(1-(n+3)x) + ...
A082164
Deterministic completely defined initially connected acyclic automata with 3 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 7, 133, 5362, 380093, 42258384, 6830081860, 1520132414241, 447309239576913, 168599289097947589, 79364534944804317166, 45701029702436877135199, 31642128418550547009710906, 25960688434777959685891570936, 24926392120419324125117256758595, 27708074645788511889179577045508824
Offset: 1
-
b[, 0, ] = 1; b[k_, n_, r_] := b[k, n, r] = Sum[Binomial[n, t] (-1)^(n - t - 1) ((t + r + 1)^k - 1)^(n - t) b[k, t, r], {t, 0, n - 1}];
d3[n_] := d3[n] = b[3, n, 1] - Sum[Binomial[n - 1, j - 1] T3[n - j, j + 1] d3[j], {j, 1, n - 1}];
T3[0, ] = 1; T3[n, k_] := T3[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + k + 1)^3 - 1)^(n - i) T3[i, k], {i, 0, n - 1}];
a[n_] := If[n == 1, 1, d3[n - 1]/(n - 2)!];
Array[a, 20] (* Jean-François Alcover, Aug 29 2019 *)
A103242
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 3, 1, 39, 8, 1, 1206, 176, 15, 1, 69189, 7784, 495, 24, 1, 6416568, 585408, 29430, 1104, 35, 1, 881032059, 67481928, 2791125, 84600, 2135, 48, 1, 168514815360, 11111547520, 389244600, 9841728, 204470, 3744, 63, 1, 42934911510249
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[3/1!, 1/0!],
[39/2!, 8/1!, 1/0!],
[1206/3!, 176/2!, 15/1!, 1/0!],
[69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
[6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0!],
[ -3/1!, 1/0!],
[9/2!, -8/1!, 1/0!],
[ -27/3!, 64/2!, -15/1!, 1/0!],
[81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
[ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n
Showing 1-4 of 4 results.
Comments