cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A082172 A subclass of quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.

Original entry on oeis.org

1, 1, 7, 1, 26, 315, 1, 63, 2600, 45682, 1, 124, 11655, 675194, 15646589, 1, 215, 37944, 4861458, 366349152, 10567689552, 1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607, 1, 511, 232560, 89076650, 26387681120, 5318920238688, 591934698991168, 23841011541867520
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by antidiagonals: (0,1),(0,2),(1,1),(0,3),... . The first column is A082160.

Examples

			The array begins:
               1,            1,          1,           1,        1, ...;
               7,           26,         63,         124,      215, ...;
             315,         2600,      11655,       37944,   100835, ...;
           45682,       675194,    4861458,    23641468, 89076650, ...;
        15646589,    366349152, 3882676581, 26387681120, ...;
     10567689552, 361884843866, ...;
  12503979423607,  ...;
Antidiagonals begin as:
  1;
  1,   7;
  1,  26,    315;
  1,  63,   2600,    45682;
  1, 124,  11655,   675194,   15646589;
  1, 215,  37944,  4861458,  366349152,  10567689552;
  1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607;
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082172:= func< n,k | A(k,n-k+1) >;
    [A082172(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i]*(-1)^(n - i - 1)*((i + k + 1)^3 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
    Table[T[n-k, k], {n, 1, 9}, {k, n, 1, -1}]//Flatten (* Jean-François Alcover, Aug 27 2019 *)
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k) for j in range(n))
    def A082172(n,k): return A(k,n-k+1)
    flatten([[A082172(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = S_3(n, k) where S_3(0, k) = 1, S_3(n, k) = Sum_{i=0..n-1} (-1)^(n-i-1)*binomial(n, i)*((i+k+1)^3-1)^(n-i)*S_3(i, k), n > 0.

A103237 Triangular matrix T, read by rows, that satisfies: T^3 + 3T^2 + 3T = SHIFTUP(T), also T^(n+2) + 3T^(n+1) + 3T^n = SHIFTUP(T^n - D*T^(n-1)) for all n, where D is a diagonal matrix with diagonal(D) = diagonal(T) = {1,2,3,...}.

Original entry on oeis.org

1, 7, 2, 133, 26, 3, 5362, 962, 63, 4, 380093, 66794, 3843, 124, 5, 42258384, 7380100, 409248, 11284, 215, 6, 6830081860, 1190206134, 65160081, 1709836, 27305, 342, 7, 1520132414241, 264665899160, 14416260516, 371199704, 5585270, 57798, 511, 8
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2005

Keywords

Comments

Leftmost column is A082164 (enumerates acyclic automata with 3 inputs). The operation SHIFTUP(T) shifts each column of T up 1 row, dropping the elements that occupied the diagonal of T.

Examples

			Rows of T begin:
[1],
[7,2],
[133,26,3],
[5362,962,63,4],
[380093,66794,3843,124,5],
[42258384,7380100,409248,11284,215,6],
[6830081860,1190206134,65160081,1709836,27305,342,7],...
Rows of T^2 begin:
[1],
[21,4],
[714,130,9],
[41923,7410,441,16],...
Rows of T^3 begin:
[1],
[49,8],
[2821,494,27],
[238238,41678,2331,64],...
Rows of T^3 + 3*T^2 + 3*T equals SHIFTUP(T):
[7],
[133,26],
[5362,962,63],
[380093,66794,3843,124],...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(P,D);D=matrix(n+1,n+1,r,c,if(r==c,r)); P=matrix(n+1,n+1,r,c,if(r>=c,(-1)^(r-c)*(c^3+3*c^2+3*c)^(r-c)/(r-c)!)); return(if(n
    				

Formula

T = P*D*P^-1 where P(r, c) = A103248(r, c)/(r-c)! = (-1)^(r-c)*(c^3+3*c^2+3*c)^(r-c)/(r-c)! for r>=c>=1 and [P^-1](r, c) = A103243(r, c)/(r-c)! and D is a diagonal matrix = {1, 2, 3, ...}.
Showing 1-2 of 2 results.