A082159
Number of deterministic completely defined acyclic automata with 2 inputs and n+1 transient labeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 3, 39, 1206, 69189, 6416568, 881032059, 168514815360, 42934911510249, 14081311783382400, 5786296490491543599, 2914663547018935095552, 1767539279001227299807725, 1271059349855055258673975296, 1069996840045068513065229943875
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function a(n) // a = A082159
if n eq 0 then return 1;
else return (&+[Binomial(n,j)*(-1)^(n-j-1)*((j+2)^2 - 1)^(n-j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + 2)^2 - 1)^(n - i) a[i], {i, 0, n - 1}];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Aug 29 2019 *)
-
lista(nn)={my(a=vector(nn+1)); for(n=1, nn+1, a[n] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + 2)^2 - 1)^(n-i-1)*a[i+1]))); a;} \\ Petros Hadjicostas, Mar 07 2021
-
@CachedFunction
def a(n): # A082159
if n==0: return 1
else: return sum(binomial(n,j)*(-1)^(n-j-1)*((j+2)^2 -1)^(n-j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
A082163
Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 3, 15, 114, 1191, 15993, 263976, 5189778, 118729335, 3104549229, 91472523339, 3002047651764, 108699541743348, 4307549574285900, 185545521930558012, 8636223446937857130, 432133295481763698951, 23140414627731672497973, 1320835234697505382760757, 80076275471464881277266666, 5139849930933791535446756127
Offset: 1
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262). [It includes the original methodology that he used in his 2003 and 2006 papers.]
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
a[n_] := a[n] = If[n<1, 0, If[n == 1, 1, SeriesCoefficient[1-Sum[a[k+1]*x^k/(1-2*x)^k*Product[1-(j+3)*x, {j, 0, k}], {k, 0, n-2}], {x, 0,
n-1}]]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 15 2014, after PARI *)
-
{a(n)=if(n<1,0,if(n==1,1,polcoeff( 1-sum(k=0,n-2,a(k+1)*x^k/(1-2*x)^k*prod(j=0,k,1-(j+3)*x+x*O(x^n))),n-1)))} \\ Paul D. Hanna, Jan 29 2005
/* Second PARI program using Valery A. Liskovets's recurrence: */
lista(nn)={my(T=matrix(nn+1, nn+1)); my(d=vector(nn)); my(a=vector(nn)); for(n=1, nn+1, for(k=1, nn, T[n, k] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); for(n=1, nn, d[n] = T[n+1,1] - sum(j=1, n-1, binomial(n-1, j-1)*T[n-j+1, j+1]*d[j])); for(n=1, nn, a[n] = if(n==1, 1, d[n-1]/(n-2)!)); a;} \\ Petros Hadjicostas, Mar 07 2021
A082172
A subclass of quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.
Original entry on oeis.org
1, 1, 7, 1, 26, 315, 1, 63, 2600, 45682, 1, 124, 11655, 675194, 15646589, 1, 215, 37944, 4861458, 366349152, 10567689552, 1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607, 1, 511, 232560, 89076650, 26387681120, 5318920238688, 591934698991168, 23841011541867520
Offset: 0
The array begins:
1, 1, 1, 1, 1, ...;
7, 26, 63, 124, 215, ...;
315, 2600, 11655, 37944, 100835, ...;
45682, 675194, 4861458, 23641468, 89076650, ...;
15646589, 366349152, 3882676581, 26387681120, ...;
10567689552, 361884843866, ...;
12503979423607, ...;
Antidiagonals begin as:
1;
1, 7;
1, 26, 315;
1, 63, 2600, 45682;
1, 124, 11655, 675194, 15646589;
1, 215, 37944, 4861458, 366349152, 10567689552;
1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082172:= func< n,k | A(k,n-k+1) >;
[A082172(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i]*(-1)^(n - i - 1)*((i + k + 1)^3 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n-k, k], {n, 1, 9}, {k, n, 1, -1}]//Flatten (* Jean-François Alcover, Aug 27 2019 *)
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k) for j in range(n))
def A082172(n,k): return A(k,n-k+1)
flatten([[A082172(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A103242
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 3, 1, 39, 8, 1, 1206, 176, 15, 1, 69189, 7784, 495, 24, 1, 6416568, 585408, 29430, 1104, 35, 1, 881032059, 67481928, 2791125, 84600, 2135, 48, 1, 168514815360, 11111547520, 389244600, 9841728, 204470, 3744, 63, 1, 42934911510249
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[3/1!, 1/0!],
[39/2!, 8/1!, 1/0!],
[1206/3!, 176/2!, 15/1!, 1/0!],
[69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
[6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0!],
[ -3/1!, 1/0!],
[9/2!, -8/1!, 1/0!],
[ -27/3!, 64/2!, -15/1!, 1/0!],
[81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
[ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n
Showing 1-4 of 4 results.
Comments