A082160
Deterministic completely defined acyclic automata with 3 inputs and n+1 transient labeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 7, 315, 45682, 15646589, 10567689552, 12503979423607, 23841011541867520, 68835375121428936153, 286850872894190847235840, 1660638682341609286358474579, 12947089879912710544534553836032
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function a(n) // a = A082160
if n eq 0 then return 1;
else return (&+[Binomial(n,j)*(-1)^(n-j-1)*((j+2)^3 - 1)^(n-j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + 2)^3 - 1)^(n - i) a[i], {i, 0, n - 1}];
Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
-
@CachedFunction
def a(n): # A082160
if n==0: return 1
else: return sum(binomial(n,j)*(-1)^(n-j-1)*((j+2)^3 -1)^(n-j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
A082171
A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).
Original entry on oeis.org
1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
1, 1, 1, 1, 1, ...;
3, 8, 15, 24, 35, ...;
39, 176, 495, 1104, 2135, ...;
1206, 7784, 29430, 84600, 204470, ...;
69189, 585408, 2791125, 9841728, 28569765, ...;
6416568, 67481928, 389244600, 1627740504, ...;
881032059, 11111547520, 75325337235, ...;
...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
1;
1, 3,
1, 8, 39;
1, 15, 176, 1206;
1, 24, 495, 7784, 69189;
1, 35, 1104, 29430, 585408, 6416568;
1, 48, 2135, 84600, 2791125, 67481928, 881032059;
...
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082171:= func< n,k | A(k,n-k+1) >;
[A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
-
lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
def A082171(n,k): return A(k,n-k+1)
flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A082158
Number of deterministic completely defined acyclic automata with 3 inputs and n transient labeled states (and a unique absorbing state).
Original entry on oeis.org
1, 1, 15, 1024, 198581, 85102056, 68999174203, 95264160938080, 207601975572545961, 674354204416939196800, 3122476748685067008205511, 19884561572783089348189507584, 169123749545536919971662851459485, 1874777145334671354828947023095675904, 26531967154935836079418311035871122812275
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function a(n) // a = A082158
if n eq 0 then return 1;
else return (&+[Binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
-
a[n_] := If[n == 0, 1, Sum[-(-1)^(n-k) Binomial[n, k] (k+1)^(3(n-k)) a[k], {k, 0, n-1}]];
Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
-
{a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^3*x+x*O(x^n))^(k+1)), n)}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
-
{a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*(k+1)^(3*(n-k))*a(k)))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
-
@CachedFunction
def a(n): # A082158
if n==0: return 1
else: return sum(binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
A082163
Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 3, 15, 114, 1191, 15993, 263976, 5189778, 118729335, 3104549229, 91472523339, 3002047651764, 108699541743348, 4307549574285900, 185545521930558012, 8636223446937857130, 432133295481763698951, 23140414627731672497973, 1320835234697505382760757, 80076275471464881277266666, 5139849930933791535446756127
Offset: 1
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262). [It includes the original methodology that he used in his 2003 and 2006 papers.]
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
-
a[n_] := a[n] = If[n<1, 0, If[n == 1, 1, SeriesCoefficient[1-Sum[a[k+1]*x^k/(1-2*x)^k*Product[1-(j+3)*x, {j, 0, k}], {k, 0, n-2}], {x, 0,
n-1}]]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 15 2014, after PARI *)
-
{a(n)=if(n<1,0,if(n==1,1,polcoeff( 1-sum(k=0,n-2,a(k+1)*x^k/(1-2*x)^k*prod(j=0,k,1-(j+3)*x+x*O(x^n))),n-1)))} \\ Paul D. Hanna, Jan 29 2005
/* Second PARI program using Valery A. Liskovets's recurrence: */
lista(nn)={my(T=matrix(nn+1, nn+1)); my(d=vector(nn)); my(a=vector(nn)); for(n=1, nn+1, for(k=1, nn, T[n, k] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); for(n=1, nn, d[n] = T[n+1,1] - sum(j=1, n-1, binomial(n-1, j-1)*T[n-j+1, j+1]*d[j])); for(n=1, nn, a[n] = if(n==1, 1, d[n-1]/(n-2)!)); a;} \\ Petros Hadjicostas, Mar 07 2021
Showing 1-4 of 4 results.
Comments