cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082160 Deterministic completely defined acyclic automata with 3 inputs and n+1 transient labeled states including a unique state having all transitions to the absorbing state.

Original entry on oeis.org

1, 7, 315, 45682, 15646589, 10567689552, 12503979423607, 23841011541867520, 68835375121428936153, 286850872894190847235840, 1660638682341609286358474579, 12947089879912710544534553836032
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

This is the first column of the array A082172.

Crossrefs

Programs

  • Magma
    function a(n) // a = A082160
      if n eq 0 then return 1;
      else return (&+[Binomial(n,j)*(-1)^(n-j-1)*((j+2)^3 - 1)^(n-j)*a(j): j in [0..n-1]]);
      end if;
    end function;
    [a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
    
  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + 2)^3 - 1)^(n - i) a[i], {i, 0, n - 1}];
    Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
  • SageMath
    @CachedFunction
    def a(n): # A082160
        if n==0: return 1
        else: return sum(binomial(n,j)*(-1)^(n-j-1)*((j+2)^3 -1)^(n-j)*a(j) for j in range(n))
    [a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024

Formula

a(n) = b_3(n) where b_3(0) = 1, b_3(n) = Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*((i+2)^3 - 1)^(n-i)*b_3(i), n > 0.

A082171 A subclass of quasi-acyclic automata with 2 inputs, n transient and k absorbing labeled states; square array T(n,k) read by descending antidiagonals (n >= 0 and k >= 1).

Original entry on oeis.org

1, 1, 3, 1, 8, 39, 1, 15, 176, 1206, 1, 24, 495, 7784, 69189, 1, 35, 1104, 29430, 585408, 6416568, 1, 48, 2135, 84600, 2791125, 67481928, 881032059, 1, 63, 3744, 204470, 9841728, 389244600, 11111547520, 168514815360, 1, 80, 6111, 437616, 28569765, 1627740504, 75325337235, 2483829653544, 42934911510249
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Array read by descending antidiagonals: (0,1), (0,2), (1,1), (0,3), ...
The first column is A082159; i.e., T(n,k=1) = A082159(n). [The number n of transient states in the name of square array T(n,k) does not include the pre-dead transient state, which is, however, included in the name of A082159. See Section 3.1 in Liskovets (2006). - Petros Hadjicostas, Mar 07 2021]

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 1) begins:
          1,           1,           1,          1,        1, ...;
          3,           8,          15,         24,       35, ...;
         39,         176,         495,       1104,     2135, ...;
       1206,        7784,       29430,      84600,   204470, ...;
      69189,      585408,     2791125,    9841728, 28569765, ...;
    6416568,    67481928,   389244600, 1627740504, ...;
  881032059, 11111547520, 75325337235, ...;
  ...
Triangular array A(n,k) = T(k-1, n-k+1) (with rows n >= 1 and columns k = 1..n), read from the antidiagonals downwards of square array T:
  1;
  1,  3,
  1,  8,   39;
  1, 15,  176,  1206;
  1, 24,  495,  7784,   69189;
  1, 35, 1104, 29430,  585408,  6416568;
  1, 48, 2135, 84600, 2791125, 67481928, 881032059;
  ...
		

Crossrefs

Programs

  • Magma
    function A(n,k)
      if n eq 0 then return 1;
      else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k): j in [0..n-1]]);
      end if;
    end function;
    A082171:= func< n,k | A(k,n-k+1) >;
    [A082171(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
    
  • Mathematica
    T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1)*((i + k + 1)^2 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
    Table[T[n - k - 1, k], {n, 1, 10}, {k, n - 1, 1, -1}] // Flatten (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    lista(nn,kk)={my(T=matrix(nn+1,kk)); for(n=1, nn+1, for(k=1, kk, T[n,k] = if(n==1, 1, sum(i=0,n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); T;} \\ Petros Hadjicostas, Mar 07 2021
    
  • SageMath
    @CachedFunction
    def A(n,k):
        if n==0: return 1
        else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^2-1)^(n-j)*A(j,k) for j in range(n))
    def A082171(n,k): return A(k,n-k+1)
    flatten([[A082171(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024

Formula

T(n, k) = S_2(n, k) where S_2(0, k) := 1 and S_2(n, k) := Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*((i + k + 1)^2 - 1)^(n-i)*S_2(i, k) for n > 0.

Extensions

Name clarified by Petros Hadjicostas, Mar 07 2021

A082158 Number of deterministic completely defined acyclic automata with 3 inputs and n transient labeled states (and a unique absorbing state).

Original entry on oeis.org

1, 1, 15, 1024, 198581, 85102056, 68999174203, 95264160938080, 207601975572545961, 674354204416939196800, 3122476748685067008205511, 19884561572783089348189507584, 169123749545536919971662851459485, 1874777145334671354828947023095675904, 26531967154935836079418311035871122812275
Offset: 0

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

This is the first column of the array A082170.

Crossrefs

Programs

  • Magma
    function a(n) // a = A082158
      if n eq 0 then return 1;
      else return (&+[Binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j): j in [0..n-1]]);
      end if;
    end function;
    [a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
    
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[-(-1)^(n-k) Binomial[n, k] (k+1)^(3(n-k)) a[k], {k, 0, n-1}]];
    Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    {a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^3*x+x*O(x^n))^(k+1)), n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
    
  • PARI
    {a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*(k+1)^(3*(n-k))*a(k)))}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
    
  • SageMath
    @CachedFunction
    def a(n): # A082158
        if n==0: return 1
        else: return sum(binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j) for j in range(n))
    [a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024

Formula

a(n) = a_3(n) where a_3(0) = 1, a_3(n) = Sum_{i=0..n-1} binomial(n, i)*(-1)^(n-i-1)*(i+1)^(3*n-3*i)*a_3(i), n > 0.
1 = Sum_{n>=0} a(n)*exp(-(1+n)^3*x)*x^n/n!. - Vladeta Jovovic, Jul 18 2005
From Paul D. Hanna, May 03 2015: (Start)
1 = Sum_{n>=0} a(n) * x^n/(1 + (n+1)^3*x)^(n+1).
1 = Sum_{n>=0} a(n) * C(n+m-1,n) * x^n/(1 + (n+1)^3*x)^(n+m) for all m>=1.
log(1+x) = Sum_{n>=1} a(n) * x^n/(1 + (n+1)^3*x)^n/n. (End)

Extensions

More terms from Michel Marcus, Aug 29 2019

A082163 Number of deterministic completely defined initially connected acyclic automata with 2 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.

Original entry on oeis.org

1, 3, 15, 114, 1191, 15993, 263976, 5189778, 118729335, 3104549229, 91472523339, 3002047651764, 108699541743348, 4307549574285900, 185545521930558012, 8636223446937857130, 432133295481763698951, 23140414627731672497973, 1320835234697505382760757, 80076275471464881277266666, 5139849930933791535446756127
Offset: 1

Views

Author

Valery A. Liskovets, Apr 09 2003

Keywords

Comments

Coefficients T_2(n,k) form the array A082171. These automata have no nontrivial automorphisms (by states).
Also equals the leftmost column of triangular matrix M=A103236, which satisfies: M^2 + 2*M = SHIFTUP(M) (i.e. each column of M shifts up 1 row). - Paul D. Hanna, Jan 29 2005

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[n<1, 0, If[n == 1, 1, SeriesCoefficient[1-Sum[a[k+1]*x^k/(1-2*x)^k*Product[1-(j+3)*x, {j, 0, k}], {k, 0, n-2}], {x, 0,
    n-1}]]]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 15 2014, after PARI *)
  • PARI
    {a(n)=if(n<1,0,if(n==1,1,polcoeff( 1-sum(k=0,n-2,a(k+1)*x^k/(1-2*x)^k*prod(j=0,k,1-(j+3)*x+x*O(x^n))),n-1)))} \\ Paul D. Hanna, Jan 29 2005
    /* Second PARI program using Valery A. Liskovets's recurrence: */
    lista(nn)={my(T=matrix(nn+1, nn+1)); my(d=vector(nn)); my(a=vector(nn)); for(n=1, nn+1, for(k=1, nn, T[n, k] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + k + 1)^2 - 1)^(n-i-1)*T[i+1, k])))); for(n=1, nn, d[n] = T[n+1,1] - sum(j=1, n-1, binomial(n-1, j-1)*T[n-j+1, j+1]*d[j])); for(n=1, nn, a[n] = if(n==1, 1, d[n-1]/(n-2)!)); a;} \\ Petros Hadjicostas, Mar 07 2021

Formula

a(1) = 1 and a(n) := d_2(n-1)/(n-2)! for n >= 2, where d_2(n) := T_2(n, 1) - Sum_{j=1..n-1} binomial(n-1, j-1) * T_2(n-j, j+1) * d_2(j); and T_2(0, k) := 1, T_2(n, k) := Sum_{i=0..n-1} binomial(n, i) * (-1)^(n-i-1) *((i+k+1)^2 - 1)^(n-i) * T_2(i, k) for n > 0. [Edited by Petros Hadjicostas, Mar 06 2021 to agree with Theorem 3.3 (p. 543) in Liskovets (2006). Here, n + 1 is "the number of transient states including the pre-dead state".]
G.f.: 1 = Sum_{n>=0} a(n+1) * (x^n/(1-2*x)^n) * Product_{k=0..n} (1 - (3 + k)*x). Thus: 1 = 1*(1-3x) + 3*(x/(1-2x))*(1-3x)*(1-4x) + 15*(x^2/(1-2x)^2)*(1-3x)*(1-4x)*(1-5x) + 114*(x^3/(1-2x)^3)*(1-3x)*(1-4x)*(1-5x)*(1-6x) + ... - Paul D. Hanna, Jan 29 2005

Extensions

More terms from Petros Hadjicostas, Mar 06 2021 using the above programs
Showing 1-4 of 4 results.