A082159
Number of deterministic completely defined acyclic automata with 2 inputs and n+1 transient labeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 3, 39, 1206, 69189, 6416568, 881032059, 168514815360, 42934911510249, 14081311783382400, 5786296490491543599, 2914663547018935095552, 1767539279001227299807725, 1271059349855055258673975296, 1069996840045068513065229943875
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function a(n) // a = A082159
if n eq 0 then return 1;
else return (&+[Binomial(n,j)*(-1)^(n-j-1)*((j+2)^2 - 1)^(n-j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + 2)^2 - 1)^(n - i) a[i], {i, 0, n - 1}];
Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Aug 29 2019 *)
-
lista(nn)={my(a=vector(nn+1)); for(n=1, nn+1, a[n] = if(n==1, 1, sum(i=0, n-2, binomial(n-1, i)*(-1)^(n-i-2)*((i + 2)^2 - 1)^(n-i-1)*a[i+1]))); a;} \\ Petros Hadjicostas, Mar 07 2021
-
@CachedFunction
def a(n): # A082159
if n==0: return 1
else: return sum(binomial(n,j)*(-1)^(n-j-1)*((j+2)^2 -1)^(n-j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
A082158
Number of deterministic completely defined acyclic automata with 3 inputs and n transient labeled states (and a unique absorbing state).
Original entry on oeis.org
1, 1, 15, 1024, 198581, 85102056, 68999174203, 95264160938080, 207601975572545961, 674354204416939196800, 3122476748685067008205511, 19884561572783089348189507584, 169123749545536919971662851459485, 1874777145334671354828947023095675904, 26531967154935836079418311035871122812275
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..150
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function a(n) // a = A082158
if n eq 0 then return 1;
else return (&+[Binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j): j in [0..n-1]]);
end if;
end function;
[a(n): n in [0..20]]; // G. C. Greubel, Jan 17 2024
-
a[n_] := If[n == 0, 1, Sum[-(-1)^(n-k) Binomial[n, k] (k+1)^(3(n-k)) a[k], {k, 0, n-1}]];
Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Aug 29 2019 *)
-
{a(n)=polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+(k+1)^3*x+x*O(x^n))^(k+1)), n)}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
-
{a(n)=if(n==0, 1, sum(k=0, n-1, -(-1)^(n-k)*binomial(n, k)*(k+1)^(3*(n-k))*a(k)))}
for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 03 2015
-
@CachedFunction
def a(n): # A082158
if n==0: return 1
else: return sum(binomial(n,j)*(-1)^(n-j-1)*(j+1)^(3*n-3*j)*a(j) for j in range(n))
[a(n) for n in range(21)] # G. C. Greubel, Jan 17 2024
A082172
A subclass of quasi-acyclic automata with 3 inputs, n transient and k absorbing labeled states.
Original entry on oeis.org
1, 1, 7, 1, 26, 315, 1, 63, 2600, 45682, 1, 124, 11655, 675194, 15646589, 1, 215, 37944, 4861458, 366349152, 10567689552, 1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607, 1, 511, 232560, 89076650, 26387681120, 5318920238688, 591934698991168, 23841011541867520
Offset: 0
The array begins:
1, 1, 1, 1, 1, ...;
7, 26, 63, 124, 215, ...;
315, 2600, 11655, 37944, 100835, ...;
45682, 675194, 4861458, 23641468, 89076650, ...;
15646589, 366349152, 3882676581, 26387681120, ...;
10567689552, 361884843866, ...;
12503979423607, ...;
Antidiagonals begin as:
1;
1, 7;
1, 26, 315;
1, 63, 2600, 45682;
1, 124, 11655, 675194, 15646589;
1, 215, 37944, 4861458, 366349152, 10567689552;
1, 342, 100835, 23641468, 3882676581, 361884843866, 12503979423607;
- G. C. Greubel, Antidiagonals n = 0..50, flattened
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
-
function A(n,k)
if n eq 0 then return 1;
else return (&+[(-1)^(n-j+1)*Binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k): j in [0..n-1]]);
end if;
end function;
A082172:= func< n,k | A(k,n-k+1) >;
[A082172(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 19 2024
-
T[0, ] = 1; T[n, k_] := T[n, k] = Sum[Binomial[n, i]*(-1)^(n - i - 1)*((i + k + 1)^3 - 1)^(n - i)*T[i, k], {i, 0, n - 1}];
Table[T[n-k, k], {n, 1, 9}, {k, n, 1, -1}]//Flatten (* Jean-François Alcover, Aug 27 2019 *)
-
@CachedFunction
def A(n,k):
if n==0: return 1
else: return sum((-1)^(n-j+1)*binomial(n,j)*((k+j+1)^3-1)^(n-j)*A(j,k) for j in range(n))
def A082172(n,k): return A(k,n-k+1)
flatten([[A082172(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Jan 19 2024
A082164
Deterministic completely defined initially connected acyclic automata with 3 inputs and n+1 transient unlabeled states including a unique state having all transitions to the absorbing state.
Original entry on oeis.org
1, 7, 133, 5362, 380093, 42258384, 6830081860, 1520132414241, 447309239576913, 168599289097947589, 79364534944804317166, 45701029702436877135199, 31642128418550547009710906, 25960688434777959685891570936, 24926392120419324125117256758595, 27708074645788511889179577045508824
Offset: 1
-
b[, 0, ] = 1; b[k_, n_, r_] := b[k, n, r] = Sum[Binomial[n, t] (-1)^(n - t - 1) ((t + r + 1)^k - 1)^(n - t) b[k, t, r], {t, 0, n - 1}];
d3[n_] := d3[n] = b[3, n, 1] - Sum[Binomial[n - 1, j - 1] T3[n - j, j + 1] d3[j], {j, 1, n - 1}];
T3[0, ] = 1; T3[n, k_] := T3[n, k] = Sum[Binomial[n, i] (-1)^(n - i - 1) ((i + k + 1)^3 - 1)^(n - i) T3[i, k], {i, 0, n - 1}];
a[n_] := If[n == 1, 1, d3[n - 1]/(n - 2)!];
Array[a, 20] (* Jean-François Alcover, Aug 29 2019 *)
A103243
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^3)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 7, 1, 315, 26, 1, 45682, 2600, 63, 1, 15646589, 675194, 11655, 124, 1, 10567689552, 366349152, 4861458, 37944, 215, 1, 12503979423607, 361884843866, 3882676581, 23641468, 100835, 342, 1, 23841011541867520, 591934698991168, 5318920238688
Offset: 1
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0! ],
[7/1!, 1/0! ],
[315/2!, 26/1!, 1/0! ],
[45682/3!, 2600/2!, 63/1!, 1/0! ],
[15646589/4!, 675194/3!, 11655/2!, 124/1!, 1/0! ],
[10567689552/5!, 366349152/4!, 4861458/3!, 37944/2!, 215/1!, 1/0! ], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0! ],
[ -7/1!, 1/0! ],
[49/2!, -26/1!, 1/0! ],
[ -343/3!, 676/2!, -63/1!, 1/0! ],
[2401/4!, -17576/3!, 3969/2!, -124/1!, 1/0! ],
[ -16807/5!, 456976/4!, -250047/3!, 15376/2!, -215/1!, 1/0! ], ...
-
{T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^3)^(r-c)/(r-c)!))); return(if(n
Showing 1-5 of 5 results.
Comments