cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A103239 Column 0 of triangular matrix T = A103238, which satisfies: T^2 + T = SHIFTUP(T) where diagonal(T)={1,2,3,...}.

Original entry on oeis.org

1, 2, 8, 52, 480, 5816, 87936, 1601728, 34251520, 843099616, 23520367488, 734404134336, 25402332040704, 964965390917120, 39964015456707584, 1793140743838290432, 86691698782589288448, 4494521175128812273152
Offset: 0

Views

Author

Paul D. Hanna, Jan 31 2005

Keywords

Comments

a(n-1) = number of initially connected acyclic unlabeled n-state automata on a 2-letter input alphabet for which only one state is affected identically by both input letters. This state is necessarily one that is carried to the sink (absorbing state). For example, with n=2, a(1)=2 counts 2333, 3233, but not 2233. Here 1 is the source and 3 is the sink and 2333 is short for {{1, 2}, {1, 3}, {2, 3}, {2, 3}} giving the action of the input letters. The unlabeled condition is captured by requiring that the first appearances of 2,3,...,n occur in that order. A082161 counts these automata without the affected-identically restriction. - David Callan, Jun 07 2006

Examples

			1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) +
52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ...
+ a(n)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
		

Crossrefs

Cf. A103238.

Programs

  • PARI
    {a(n)=if(n<0,0,if(n==0,1,polcoeff( 1-sum(k=0,n-1,a(k)*x^k/(1-x)^k*prod(j=0,k,1-(j+2)*x+x*O(x^n))),n)))}

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-x)^n*Product_{j=0..n} (1-(j+2)*x).

A103244 Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2-k)^(n-k)/(n-k)! for n >= k >= 1.

Original entry on oeis.org

1, 2, 1, 20, 6, 1, 512, 108, 12, 1, 25392, 4104, 336, 20, 1, 2093472, 273456, 17568, 800, 30, 1, 260555392, 28515456, 1500288, 54800, 1620, 42, 1, 45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1, 10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1
Offset: 1

Views

Author

Paul D. Hanna, Feb 02 2005

Keywords

Comments

Define triangular matrix P by P(n,k) = (-k^2-k)^(n-k)/(n-k)!, then M = P*D*P^-1 = A103238 satisfies: M^2 + M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row.
First column is A103353.

Examples

			This triangle begins:
1;
2, 1;
20, 6, 1;
512, 108, 12, 1;
25392, 4104, 336, 20, 1;
2093472, 273456, 17568, 800, 30, 1;
260555392, 28515456, 1500288, 54800, 1620, 42, 1;
45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1;
10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1; ...
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[2/1!, 1/0!],
[20/2!, 6/1!, 1/0!],
[512/3!, 108/2!, 12/1!, 1/0!],
[25392/4!, 4104/3!, 336/2!, 20/1!, 1/0!],
[2093472/5!, 273456/4!, 17568/3!, 800/2!, 30/1!, 1/0!],...
forming the inverse of matrix P where P(n,k) = (-1)^(n-k)*(k^2+k)^(n-k)/(n-k)!:
[1/0!],
[ -2/1!, 1/0!],
[4/2!, -6/1!, 1/0!],
[ -8/3!, 36/2!, -12/1!, 1/0!],
[16/4!, -216/3!, 144/2!, -20/1!, 1/0!], ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 9;
    P = Table[If[n >= k, (-k^2-k)^(n-k)/(n-k)!, 0], {n, 1, nmax}, {k, 1, nmax}] // Inverse;
    T[n_, k_] := If[n < k || k < 1, 0, P[[n, k]]*(n - k)!];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
  • PARI
    {T(n,k)=local(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2-c)^(r-c)/(r-c)!))); return(if(n
    				

Formula

For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2-m)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2-k)^(j-k)*T(n, j).
Showing 1-2 of 2 results.