A103239
Column 0 of triangular matrix T = A103238, which satisfies: T^2 + T = SHIFTUP(T) where diagonal(T)={1,2,3,...}.
Original entry on oeis.org
1, 2, 8, 52, 480, 5816, 87936, 1601728, 34251520, 843099616, 23520367488, 734404134336, 25402332040704, 964965390917120, 39964015456707584, 1793140743838290432, 86691698782589288448, 4494521175128812273152
Offset: 0
1 = (1-2x) + 2*x/(1-x)*(1-2x)(1-3x) + 8*x^2/(1-x)^2*(1-2x)(1-3x)(1-4x) +
52*x^3/(1-x)^3*(1-2x)(1-3x)(1-4x)(1-5x) + ...
+ a(n)*x^n/(1-x)^n*(1-2x)(1-3x)*..*(1-(n+2)x) + ...
-
{a(n)=if(n<0,0,if(n==0,1,polcoeff( 1-sum(k=0,n-1,a(k)*x^k/(1-x)^k*prod(j=0,k,1-(j+2)*x+x*O(x^n))),n)))}
A103244
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (-k^2-k)^(n-k)/(n-k)! for n >= k >= 1.
Original entry on oeis.org
1, 2, 1, 20, 6, 1, 512, 108, 12, 1, 25392, 4104, 336, 20, 1, 2093472, 273456, 17568, 800, 30, 1, 260555392, 28515456, 1500288, 54800, 1620, 42, 1, 45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1, 10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1
Offset: 1
This triangle begins:
1;
2, 1;
20, 6, 1;
512, 108, 12, 1;
25392, 4104, 336, 20, 1;
2093472, 273456, 17568, 800, 30, 1;
260555392, 28515456, 1500288, 54800, 1620, 42, 1;
45819233280, 4311418752, 191549952, 5808000, 140400, 2940, 56, 1;
10849051434240, 894918533760, 34352605440, 887256000, 18033840, 313992, 4928, 72, 1; ...
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[2/1!, 1/0!],
[20/2!, 6/1!, 1/0!],
[512/3!, 108/2!, 12/1!, 1/0!],
[25392/4!, 4104/3!, 336/2!, 20/1!, 1/0!],
[2093472/5!, 273456/4!, 17568/3!, 800/2!, 30/1!, 1/0!],...
forming the inverse of matrix P where P(n,k) = (-1)^(n-k)*(k^2+k)^(n-k)/(n-k)!:
[1/0!],
[ -2/1!, 1/0!],
[4/2!, -6/1!, 1/0!],
[ -8/3!, 36/2!, -12/1!, 1/0!],
[16/4!, -216/3!, 144/2!, -20/1!, 1/0!], ...
-
nmax = 9;
P = Table[If[n >= k, (-k^2-k)^(n-k)/(n-k)!, 0], {n, 1, nmax}, {k, 1, nmax}] // Inverse;
T[n_, k_] := If[n < k || k < 1, 0, P[[n, k]]*(n - k)!];
Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
-
{T(n,k)=local(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(-c^2-c)^(r-c)/(r-c)!))); return(if(n
Showing 1-2 of 2 results.
Comments